The Role of the Plasmasphere in Radiation Belt Particle Energization and Loss

Wm. Robert Johnston

Ph.D. Dissertation Presentation

University of Texas at Dallas

8 April 2009

Outline

- Background
 - plasmasphere, LIT, radiation belts
- Instruments
 - DMSP, IMAGE, SAMPEX
- Method and Results
 - use DMSP observations of LIT to identify plasmapause
 - comparisons with IMAGE, model
 - application to relativistic microbursts
 - application to radiation belt flux dynamics
- Conclusions
- Continuing Research

Magnetosphere and plasmasphere

W. R. Johnston – 8 April 2009 – Ph.D. presentation

- Inner magnetosphere
 - Corotating B field, closed drift paths
 - Plasmasphere and radiation belts
- Plasmasphere
 - Cold, dense plasma
 - H+, 5-10% He+
 - Out to L=3-5, dynamic
- Steady state plasmasphere
 - Bounded by transition from corotation/closed drift paths to open drift paths
 - Within PP, flux tubes fill with ionospheric plasma
 - Outside PP, flux tubes convect to magnetopause and empty

Plasmasphere in stormtime

- Stronger convection field -> contraction, erosion by emptying (hours)
- Weaker convection field -> refilling (days)
- Plasmapause location depends on history, not just convective E-field
- Figure shows IMAGE EUV observations (top), interpretation (bottom)

Plasmapause signatures in ionosphere

- Several ionospheric signatures of the plasmapause have been proposed, including:
 - midlatitude electron density troughSETELIT
 - precipitating electron boundarySAR arcs
- Generally not a one-to-one correspondence between any of these and the plasmapause
- The light ion trough (LIT) is proposed as one of the more consistent signatures (Taylor and Walsh, 1972, *JGR*, 77:6716; Horwitz et al., 1990, *JGR*, 95:7949)
- Some have found the LIT tends to be equatorward of other plasmapause identifications (Foster et al., 1978, *JGR*, 83:1175) or a possible LIT-plasmapause mismatch on the duskside Grebowsky et al., 1978, *PSS*, 26:651)

Light ion trough

- The light ion trough (LIT) is the region of low ionospheric H⁺/He⁺ density near the equatorial edge of the auroral zone
- A simple model links the LIT and plasmapause:
 - H⁺ escapes from ionosphere due to large scale height/thermal velocity
 - equatorward of LIT, escaping light ions saturate closed flux tubes, forming the plasmasphere
 - poleward of LIT, light ions are on flux tubes that eventually empty through the dayside magnetopause

- Reality is more complicated:
 - temperature gradient associated with LIT produces change in scale height: ionospheric density gradient may not be on same field line as the density gradient at high altitude
 - LIT may be generally equatorward of PP due to H⁺ outflow, long refilling times for outer PP flux tubes, horizontal E fields (Foster et al., 1978, *JGR*, 83:1175).

Radiation belts

- Radiation belts are comprised of energetic charged particles (keV to MeV) trapped by the Earth's magnetic field
 - two-belt structure, with outer electron belt very dynamic in stormtimes
- Trapped particle motion includes three periodic motions
 - gyromotion, bounce, drift
- Steady-state radiation belts are a dynamic balance of various sources, diffusion mechanisms, and losses
 - including a variety of waveparticle interactions

Plasmasphere-radiation belt connection

 Plasmapause (PP) correlates with inner edge of outer radiation belt

 Wave-particle interactions are proposed as the casual link:

- stormtime EMIC waves inside duskside PP scatter radiation belt particles into loss cone, rapidly depleting outer belt
- Significant stormtime losses from chorus-related relativistic microbursts
- Slower depletion from whistler hiss inside PP
- whistler-mode chorus outside PP energizes radiation belt particles over multiple orbits, slowly repopulating belt (Summers et al., 1998, *JGR*, 103:20487)

Chorus wave-particle interactions

- $\omega k_{\parallel} v_{\parallel} = \frac{n |\Omega_e|}{}$ Equation for conditions for gyro-resonance between EM waves and electrons →
 - n=1,2,3,... whistler interactions
 - n=0 Landau resonance
 - n=-1 EMIC interaction (relativistic)
- How to make whistler chorus
 - Injections into ring current provide soft electron population (~tens of keV)
 - Pitch-angle-dependent drift and non-dipolar field produce population anisotropies
 - Anisotropies lead to instabilities for wave growth at expense of electron energy
 - Tail end of electron population can gain energy at expense of chorus
 - Individual high amplitude chorus elements can scatter electrons into loss cone—fast
- Whistler chorus is most intense outside the PP on the dawn side and during storms (Meredith et al., 2003, GRL, 30:1871).
- Whistler chorus reflected into plasmasphere may be the main source of whistler hiss (Bortnik et al., 2009, Nature, 452:62)

electrons

cold electrons

neutrals

Microbursts

- Microbursts: short duration (<1 sec) bursts of precipitating relativistic electrons observed in LEO
 - Distinct from "soft" microbursts
 - First reported by Brown and Stone (1972, JGR, 77:3384)
 - Associated with dawnside and poststorm RB recovery (Nakamura et al., 2000, JGR, 111:A11S02)
 - Innermost occurrences associated with modeled PP location (Lorentzen et al., 2001, GRL, 28:2573)

- They are believed to represent wave-particle scattering of RB particles into the loss cone
 - Linked to VLF chorus (Lorentzen et al., 2001, JGR, 106:6017)
 - Side effect of energization by whistler chorus outside PP?
 - Connected to high-amplitude storm-time chorus?

Instruments

DMSP

- DMSP satellites: sun-synchronous circular orbits near 840 km alt., 101 min. period, 99° inclination
- 3-4 satellites in operation continuously over 10+ years
- Plot illustrates polar coverage in one day from four DMSP satellites (F11-F14) in MLAT-MLT
 - provides ~50% MLT coverage at 40°, ~75% coverage at 60°
- Instruments include
 - RPA: Retarding Potential Analyzer providing ion density, composition, temperature
 - Ion Drift Meter providing cross track ion velocity
 - SSJ/4 or SSJ/5 providing energy spectra/flux of precipitating electrons and ions

DMSP Coverage October 19, 1998

IMAGE

- IMAGE spacecraft:
 - eccentric polar orbit, from 1400 km alt. to 8 R_F
 - operational 3/2000 to 12/2005
- EUV imager
 - directly imaged 30.4 nm UV resonantly scattered by He⁺
 - could image plasmasphere by its He⁺ component
- Sample of extracted plasmapause locations from reprojected EUV image (from J. Goldstein)--

SAMPEX

- SAMPEX spacecraft:
 - polar LEO (500-620 km), operational 7/1992 to present (by NASA to 2004, then by Aerospace)
- **PET**: Proton/Electron Telescope
 - has series of eight solid state detectors
 - detects energetic electrons (0.4-30 MeV) and H⁺/He⁺ (18-250 MeV)
- HILT: Heavy Ion Large Telescope
 - designed for heavy ion observations, also provides 100-ms resolution data on >1 MeV electrons
- SAMPEX provides pitch angle information only when in spin mode
 - this mode periodically 5/1996-5/1998, 12/1999-2/2000
 - full pitch angle information twice per 60-sec rotation
- 8-year spectrogram of SAMPEX electron observations with Dst--

W. R. Johnston - 8 April 2009 - Ph.D. presentation

Method and Results

Method and Results

- Results from two case studies:
 - 1 day, 18 June 2001 (day 169)
 - 72 days, 21 March-31 May 2001 (days 80-151)
 - these periods selected to match availability of processed IMAGE data (J. Goldstein)
- Further results from developing database:
 - Most of 2001
 - Individual storm events 1998-2004
- 17 months of data processed to date
- Method described in Anderson, Johnston and Goldstein (2008), GRL, 35:L15110.
- First results in Johnston and Anderson (2009), submitted to *JGR*.

Method: algorithm for LIT ID

- [1] use DMSP [H+] data from 20-65° MLAT N/S
- [2] smooth data with Hanning window with fixed MLAT width
- [3] if maximum dynamic range is less than a factor of 10, ignore pass
- some passes rejected manually (too noisy, no LIT, etc.)
 - typically LIT not observable in DMSP data for SZA < 95°

Method: algorithm for LIT ID

- [4] identify all local minima in smoothed density
- [5] identify subset of minima with steep equatorward rise in density
- [6] move equatorward to location where density is factor of F
 greater than at minimum (F=1.3)
 - F value chosen to avoid bias from broad minima (mean \triangle MLAT ~ 1°)
- [7] manually identify one such location as PP

Method: mapping to equatorial plane

- Map plasmapause ID along field lines from DMSP location to equatorial plane
- Use both internal and external fields from GEOPAK
 - internal: epoch-appropriateIGRF
 - external: Tsyganenko 2001 (with ACE data for input)
- Figure shows orbit track from one DMSP pass mapped to SM X-Y plane with (red) and without (dark blue) external field
- Note that mapping is not required for DMSP-SAMPEX comparisons (both in LEO)

Results: LIT identifications

- Plots show DMSP H⁺ density vs. MLAT, smoothed density in green
 - pre-midnight on left, morning on right
- Vertical red line is equatorward electron precipitation boundary
- Semi-automatic PP identification is at blue line

Results: mapped IDs from 1-day study

- For 18 June 2001, plots show IMAGE EUV images of plasmasphere projected to SM X-Y plane, Sun at right
- Red lines show mappings of DMSP orbit track to SM X-Y plane, red cross shows identified plasmapause

Results: IDs from 72-day study

Statistics for 72-day study (2001 days 80-151):

all passes	15,268	(100%)
rejected by program	5,253	(34.4%)
(dynamic range too low)		
rejected manually before analysis	7,622	(49.9%)
(data too noisy, no visible LIT)		
rejected manually after analysis	40	(0.3%)
retained plasmapause IDs	2,353	(15.4%)

Average of 33 plasmapause IDs per day (range 3-64)

Results: IDs from 72-day study

- DMSP orbit orientation imposes preferred MLT distribution
 - dusk-dawn or 0930-2130 at equator
- For LIT to be identified, must have >~5% H+ -- i.e. be near or above O+ transition height
 - strong SZA dependence (SZA>~95°)
 - winter and/or nightside passes preferred
- Mapped MLT (angle from sunward in SM equatorial plane) is further affected by antisunward stretching of B field lines at high altitudes

Results: comparison to IMAGE

- 72-day study yielded 187 comparisons to IMAGE
- two clusters in data:
 - "good" match cluster, N=145 (78%), mean difference 0.435±0.407 L
 - "mismatch" cluster, N=42 (22%), mean difference 1.770±0.440 L
 - mismatch defined by (L_I-L_D)/L_I >0.41L_I
- examination of mismatches suggests DMSP RPA data is showing plasmasphere structures (plumes, notches, etc.)

Results: mismatch investigation

- four H⁺ density plots in 50-min period on 29 May 2001: three good matches, one mismatch (F15)
 - IMAGE EUV shows mismatch case maps to inside of plume
 - DMSP RPA data shows clear LIT in good cases, suggests plasmasphere structure in mismatch case

Results: comparison to PP model

- comparison to O'Brien- Moldwin model (2003, GRL, 30:1152), parameterized by Dst and MLT
 - Model based on CRRES observations
- model PP averages 0.893±0.602 L greater than DMSP PP
- for L>~4, results diverge
 - model may not extend to Dst ~ 0
 - DMSP ID method may have difficulty with diffuse plasmapause, tends to cut off at I ~5

Anderson, Johnston, and Goldstein, 2008

$$L_{pp} = -1.54 \left[1 - 0.04 \cos \left(\frac{\text{MLT} - 20.6}{24/2\pi} \right) \right] \log_{10} |\text{Dst}| + 6.2 \left[1 + 0.04 \cos \left(\frac{\text{MLT} - 22}{24/2\pi} \right) \right]$$

Results: microbursts

- red: SAMPEXidentified microbursts
- green: all DMSPbased plasmapause IDs (daily average in black)
- shows strong correlation in radial dynamics
 - microbursts nearly always outside PP (all but 5 of 2170)
 - during erosion, inward movement of microbursts follows inward PP movement within hours

Results: superposed epoch study

- Superposed epoch study of 7 storms, Dst_{min} -100 to -250 nT
- plasmapause IDs (green) with 12-hr average (black), microburst locations (red) (MLT 0-9 hrs)
- Dst (top) and microburst frequency (below)
- Shows microbursts intensify and move inward within hours of storm
- Intense microbursts last 1-2 days from Dst_{min}, relatively little activity not associated with storms

Johnston and Anderson, 2009, submitted to JGR

Results: microburst delay times

- Histograms show binned counts of PP and microburst detections in time relative to Dst_{min}
 - each plot shows one 0.25-L
 bin
 - includes microbursts in bin,
 PP in bin or outward
- Shows microbursts occur at L-values within hours of emptying by plasmasphere erosion
- Delays range from <2 hrs at L=3-3.25 to 6-8 hrs at L=4

Cause of microbursts

- Given occurrence of relativistic microbursts at low L-values within hours of plasmasphere erosion, if this is chorus-driven it requires:
 - Injections of soft electrons as source of whistler chorus;
 - Development of chorus itself;
 - Presence of relativistic electron flux to be scattered by chorus
 - either already at these L-values, radially transported, or newly energized

Results: microbursts

- Plot shows spectrogram of radiation belt flux (2-6 MeV e⁻)
- Dark red lines: L-value bins with detected microbursts

- White dots: PP detections
- Black dots: inner edge of plasmasheet precipitation

Results: microbursts

 Shows correlation between plasmasheet and microbursts combined with radiation belt flux Consistent with microbursts resulting from chorus interactions, chorus triggered by plasmasheet injections (Li et al., 2009)

Microbursts vs. plasmasheet/RB flux

- Plots show microburst frequency vs. log electron flux (horiz.) and L-value relative to innermost plasmasheet detection (vert.)
- Binning by 12 hrs (top), 6 hrs (bottom)
- Results:
 - Hardly any microbursts inward of plasmasheet
 - Microbursts increase with higher RB flux and more plasmasheet overlap
 - Drop in microbursts at upper right may be poor statistics

Radiation belts and plasmapause

- Spectrogram of daily average electron flux (2-6 MeV)
- Daily average PP location with standard deviation (white)
- Storms produce prompt changes in RB, usually depletion, with slower recovery often at different Lvalues
- Plasmasphere erosion, refilling seen

 Note that RB recovers outside PP, but when PP recovers to overlap RB this appears to be accompanied by slow RB losses

Radiation belt response vs. plasmapause

Analysis method:

- average RB flux by 1 day, 0.1L bins
- Find ratio of each bin's flux to flux one day earlier
- Collect results by L-value relative to PP and by Dst (2-day mean, bins of 50 nT)
- Median results from 82 days

Results

- Mean PP location L=2.1-3.7
- Outside PP, flux tends to increase, more with high Dst
- Inside PP, far less change, flux decreases at lower Dst
- Bottom line: RB flux
 dynamics changes at PP

Radiation belt response timescales

- Same results but expressed as e-folding timescales: e^{±t/T}
 - Increases *
 - Decreases <>
- Shows trend for increasing RB flux outside PP, greater increase with higher Dst
 - Peak *T* ~10 days for Dst~0 nT
 - Peak T~8 hrs for Dst~-150 nT
- Decreasing flux typical inside PP
 - *T* ~10 days at low Dst
 - Flux increases at high Dst, but far below rates outside PP
- Results poorly resolved for T > 10 days
- Significant change at PP location

Dst range (nT)	-175 to -150	-125 to -75	-75 to -25	-25 to +25
Days	1	5	26	50
Mean PP	2.07	2.31	2.89	3.68
PP range	2.07	2.06-2.61	2.40-3.31	2.64-4.59

Conclusions

- We have obtained initial results from a method of identifying the plasmapause using DMSP observations of the LIT.
- Comparisons show good correlation with IMAGE plasmapause IDs and O'Brien-Moldwin model.
- Initial results from comparisons to SAMPEX microburst observations show microbursts follow plasmasphere erosion on timescales of a few hours
- Comparisons to SSJ/4 observations support association of microbursts with combination of plasmasheet injection-induced chorus plus radiation belt flux
- Analysis of radiation belt flux changes relative to plasmapause location shows expected relationship (increases outside PP, slow losses inside PP)

Continuing Research

- Build multi-year database
 - potentially over 60,000 PP IDs for 10+ years (one full solar cycle)
- Case studies/epoch analyses
 - average PP/radiation belt response to stormtime perturbations
- Study of plasmapause-LIT relationship
- Investigate obtaining high-altitude plasmasphere densities from DMSP observations
- Study of plasmapause-microburst relationship
 - place constraints on temporal, spatial dynamics
- Statistical comparison of mean PP, mean radiation belt location with time offset
 - different characteristic response times for erosion/recovery phases
- Compare wave observations (e.g. CLUSTER) to PP location
- Correlate PP location to locations/times where loss cones are populated
 - pitch angle observations available for periods in 1996-1998, 2000

Acknowledgements

- Phil Anderson
- Greg Earle, Marc Hairston, Rod Heelis, Xinchou Lou, Brian Tinsley
- Collaborators and data providers
 - J. Goldstein, T. P. O'Brien, DMSP team
- Margie Renfrow
- UTD physics faculty, staff, and students
- My parents and family
- Vickey Johnston

