Inner Magnetosphere: A very quick introduction

Wm. Robert Johnston
GEM Workshop - Midway, UT - 22 June 2008
Outline

- Overview
- Plasmasphere
- Ring current
- Radiation belts
- Summary
The big picture

- Inner magnetosphere--characterized by
 - nearly dipolar B field
 - closed drift paths
- Includes--
 - plasmasphere
 - ring current
 - radiation belts
Plasmasphere

- Plasmasphere—a torus of cold (~1 eV), dense (10-10³ cm⁻³) plasma trapped on field lines in corotation region of the inner magnetosphere
 - outer boundary (plasmapause) tends to correlate with inner boundary of outer radiation belt
 - typically extends to L=3-5, but can be very structured and dynamic
Plasmasphere in steady state

- Consider sum of cross tail E-field and corotation E-field:
 - Result is a region of closed equipotentials or closed drift paths
 - Inside, flux tubes fill with plasma escaping from ionosphere
 - Outside, flux tubes convect to magnetopause and empty

after Kavanagh et al., 1968
Plasmasphere in stormtime

- Stronger convection field -> contraction, emptying (hours)
- Weaker convection field -> refilling (days)
- Plasmapause location depends on history, not just convective E-field

Goldstein (2004) ORBITALS workshop
Ring current

- As plasma convects from magnetotail towards Earth, gradient drift causes electrons to drift eastward, protons westward
- Result is ring current (westward)
- Dst index is measure of magnetic field induced at equator of Earth by ring current
- Ring current (and hence Dst) increases during storms
- Ring current may be partially closed through ionosphere by parallel currents
- Below: image of ring current by IMAGE HENA
Radiation belts

- Radiation belts comprise energetic charged particles trapped by the Earth’s magnetic field. (from keV to MeV)

- A given field line is described by its L value *(radial location, in \(R_E \), of its intersection with magnetic equator)*

- Inner belt region:
 - Located at L~1.5-2
 - Contains electrons, protons, and ions.
 - Very stable.

- Outer belt region:
 - Located at L~3-6
 - Contains mostly electrons.
 - Very dynamic.

- Slot region: lower radiation region between the belts
Periodic motions of trapped particles

- Three types of periodic motion of trapped particles
- Each motion has an associated adiabatic invariant
 - invariant phase space more useful for modeling
- Pitch angle:

\[\tan \alpha = \frac{V_\perp}{V_{||}} \]

<table>
<thead>
<tr>
<th>Gyro motion</th>
<th>V x B acceleration leads to gyro motion about field lines</th>
<th>F~ kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounce motion</td>
<td>As a particle gyrates down a field line, the pitch angle increases as B increases; Motion along field line reverses when pitch angle reaches 90° (mirror point)</td>
<td>F~ Hz</td>
</tr>
<tr>
<td>Drift motion</td>
<td>Gradient in magnetic field leads to drift motion around Earth: east for electrons, west for protons/ions</td>
<td>F~mHz</td>
</tr>
</tbody>
</table>
Sources, energization, diffusion, and losses

- Sources: solar wind or plasmasheet plasma, cosmic ray albedo neutrons
- Energized by wave-particle interactions (e.g. whistler waves), crosstail E field fluctuations
- Diffusion: by wave-particle interactions
- Losses: by magnetopause shadowing or scattering into loss cone (loss to atmosphere)
 - Scattering by wave-particle interactions, Coulomb collisions

Reeves, after Summers et al., 1998
Radiation fluxes from CRRES

- CRRES = Combined Release and Radiation Effects Satellite
- radiation flux observations from CRRES, 1990-91
- scale converted to rads/hour
Long term dynamics from SAMPEX

- SAMPEX = Solar Anomalous and Magnetospheric Particle Explorer
- SAMPEX observations over most of a solar cycle
- shows long-term dynamics in outer radiation belt

Li et al., 2001

[Graph showing proton and electron dynamics over the years 1993 to 2001, with color-coding for the Ds index and L value for electrons.]
Observation locations

- Satellites
 - low Earth orbit (SAMPEX, DMSP)
 - Geosynchronous orbit (GOES)
 - Eccentric orbit (IMAGE, CRRES, CLUSTER, RBSP)
- Ground based systems
Summary

- Inner magnetosphere: near-dipolar B field, closed drift paths
- Plasmasphere
- Ring current
- Radiation belts
- These systems are very dynamic
- They interact with each other and with ionosphere, outer magnetosphere
- Understanding is important for both science and applications

NASA web site
Thank you!

wrjohnston@prodigy.net

see my poster Monday

O'Brien, in Lemaire and Gringauz (1998)