The Role of the Plasmasphere in Radiation Belt Particle Energization and Loss

Wm. Robert Johnston

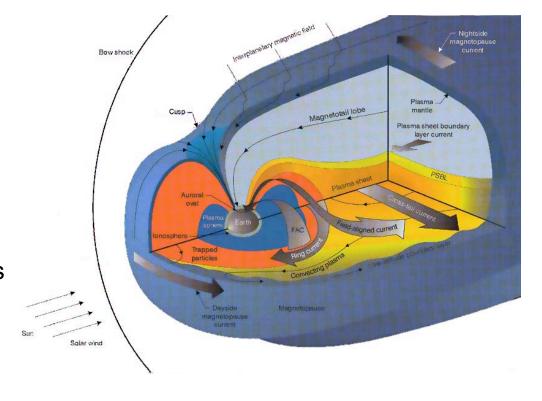
Ph.D. Research Proposal

12 September 2007

Outline

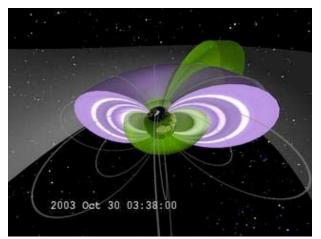
- Background
 - plasmasphere, LIT, radiation belts
- Instruments
 - DMSP, IMAGE, SAMPEX
- Method and Initial Results
 - use of DMSP observations of LIT to identify plasmapause
 - map plasmapause locations to equatorial plane
 - compare with IMAGE plasmapause observations
 - statistical studies in combination with SAMPEX observations
- Continuing Research
- Conclusion

Background


- Background
 - plasmasphere, LIT, radiation belts
- Instruments
 - DMSP, IMAGE, SAMPEX
- Method and Initial Results
 - use of DMSP observations of LIT to identify plasmapause
 - map plasmapause locations to equatorial plane
 - compare with IMAGE plasmapause observations
 - statistical studies in combination with SAMPEX observations
- Continuing Research
- Conclusion

Magnetosphere

- Magnetosphere results from interaction of Earth's B field, solar wind/IMF
 - magnetotail: sunward convection, dawn to dusk crosstail electric field
 - inner magnetosphere:
 region of closed field
 lines, corotating B/E fields


IRF web site

Plasmasphere

- Plasmasphere --- a torus of cold (~1 eV), dense (10-10³ cm⁻³) plasma trapped on field lines in corotation region of the inner magnetosphere
 - outer boundary (plasmapause) tends to correlate with inner boundary of outer radiation belt
 - typically extends to L=3-5, but can be very structured and dynamic
 - mostly H⁺, 5-10% He⁺

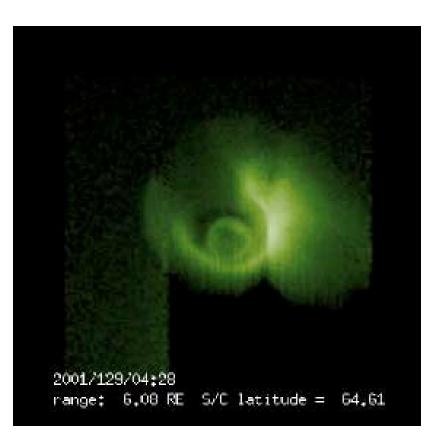
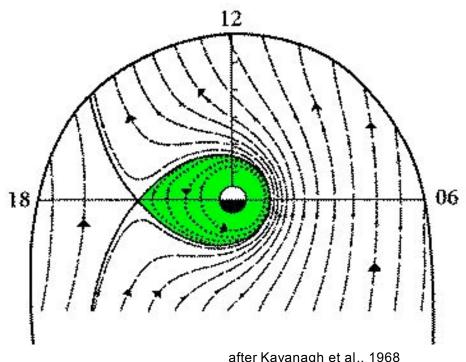
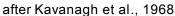


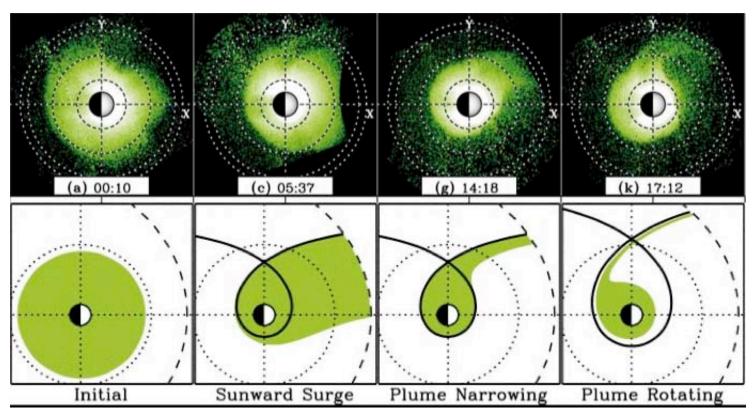
IMAGE EUV web site




NASA/GSFC web site

Plasmasphere in steady-state

- Consider cross tail E-field plus corotation E-field
- Result is a region of closed equipotentials containing closed B field lines (Nishida, 1966, JGR, 71:5669; Brice, 1967, *JGR*, 72:5193)
- Plasmapause at L where $E_T = (B_0/L^3) L R_F \omega$
- Inside, flux tubes fill with plasma escaping from ionosphere
- Outside, flux tubes convect to magnetopause and empty



Plasmasphere in stormtime

- Stronger convection field -> contraction, emptying (hours)
- Weaker convection field -> refilling (days)
- Plasmapause location depends on history, not just convective E-field

Plumes and notches

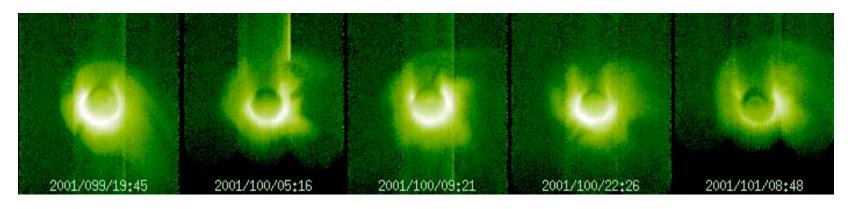


IMAGE EUV web site

- Plumes--observed on duskside during erosion phase
- Notches--radial depleted regions, lifetimes up to 60 hours, tend to slightly sub-corotate (Gallagher et al., 2005, JGR, 110:A09201)

Plasmapause signatures in ionosphere

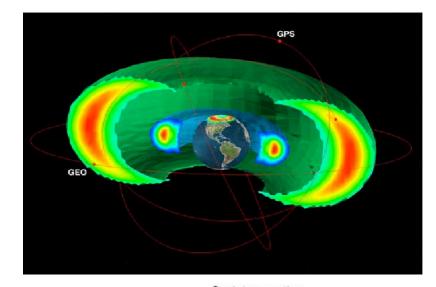
 Several ionospheric signatures of the plasmapause have been proposed, including:

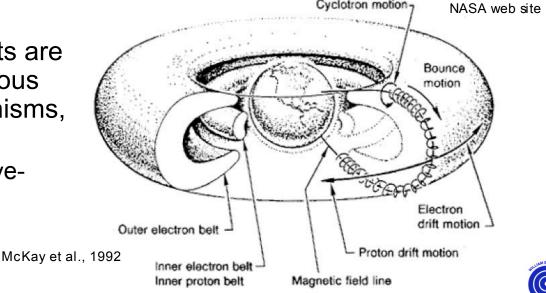
midlatitude electron density troughTECSETE

precipitating electron boundaryLITSARS

- Generally not a one-to-one correspondence between any of these and the plasmapause
- Light ion trough (LIT) is proposed as one of the more consistent signatures (Taylor and Walsh, 1972, *JGR*, 77:6716; Horwitz et al., 1990, *JGR*, 95:7949)
- Some have found the LIT tends to be equatorward of other plasmapause identifications, plus a possible LIT-plasmapause mismatch on the duskside (Foster et al., 1978, *JGR*, 83:1175; Grebowsky et al., 1978, *PSS*, 26:651)

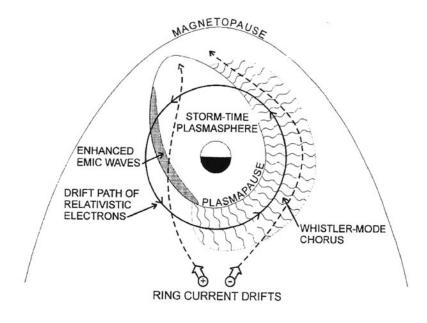
Light ion trough


- The light ion trough (LIT) is a steep latitudinal gradient in ionospheric H⁺/He⁺ density near equatorial edge of auroral zone
- Simple model associates LIT with plasmapause:
 - ionospheric H⁺ escapes from atmosphere due to large scale height/thermal velocity
 - equatorward of LIT, escaping light ions saturate closed flux tubes, forming the plasmasphere
 - poleward of LIT, light ions are on flux tubes that eventually empty through the magnetopause
- Reality is more complicated:
 - temperature gradient associated with LIT produces change in scale height: density gradient may not be on same field line as plasmapause
 - LIT may be generally equatorward of PP due to H⁺ outflow, long refilling times for outer PP flux tubes, horizontal E fields (Foster et al., 1978, *JGR*, 83:1175).



Radiation belts

- Radiation belts comprise energetic charged particles (keV to MeV) trapped by the Earth's magnetic field
- Two belts, slot region in between
 - inner belt of electrons/ions, very stable
 - outer belt of electrons, very dynamic
- Trapped particles have three types of periodic motion
- Steady-state radiation belts are a dynamic balance of various sources, diffusion mechanisms, and losses
 - including a variety of waveparticle interactions



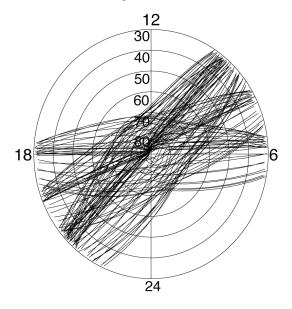
Plasmasphere-radiation belt connection

- Plasmapause (PP) correlates with inner edge of outer radiation belt
- Wave-particle interactions are proposed as the casual link:
 - stormtime EMIC waves inside duskside PP scatter radiation belt particles into loss cone, rapidly depleting outer belt
 - whistler-mode chorus outside PP energizes radiation belt particles over multiple orbits, slowly repopulating belt (Summers et al., 1998, *JGR*, 103:20487)

Summers et al., 1998

Instruments

- Background
 - plasmasphere, LIT, radiation belts
- Instruments
 - DMSP, IMAGE, SAMPEX
- Method and Initial Results
 - use of DMSP observations of LIT to identify plasmapause
 - map plasmapause locations to equatorial plane
 - compare with IMAGE plasmapause observations
 - statistical studies in combination with SAMPEX observations
- Continuing Research
- Conclusion



DMSP

- DMSP satellites: sun-synchronous circular orbits near 840 km alt., 101 min. period, 99° inclination
- 3-4 satellites in operation continuously over 10+ years
- Plot illustrates polar coverage in one day from four DMSP satellites (F11-F14) in MLAT-MLT
 - provides ~50% MLT coverage at 40°,
 ~75% coverage at 60°
- Instruments include
 - Retarding Potential Analyzer providing ion density, composition, temperature
 - Ion Drift Meter providing cross track ion velocity
 - SSJ/4 providing energy spectra/flux of precipitating electrons and ions

DMSP Coverage October 19, 1998

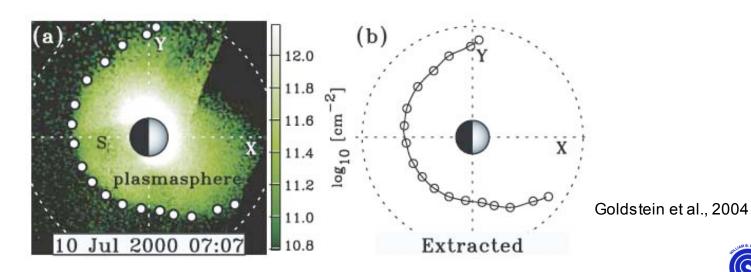
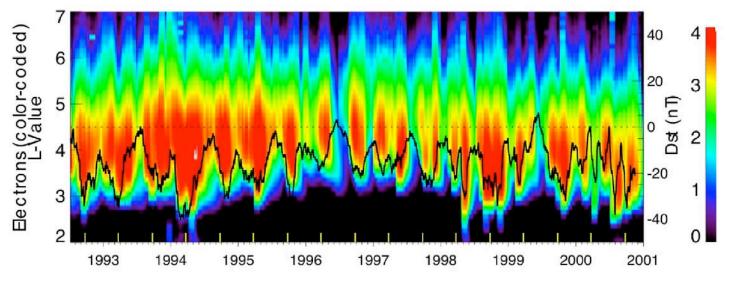


IMAGE EUV


- IMAGE spacecraft:
 - eccentric polar orbit, from 1400 km alt. to 8 R_E
 - operational 3/2000 to 12/2005
- EUV imager
 - directly imaged 30.4 nm UV scattered by He⁺
 - could image plasmasphere by its He⁺ component
- Sample of extracted plasmapause locations from reprojected EUV image (from J. Goldstein)--

SAMPEX PET

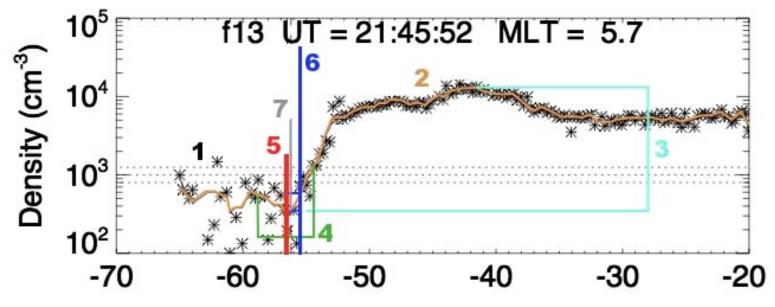
- SAMPEX spacecraft:
 - LEO (500-620 km), polar
 - operational 7/1992 to present
- Proton/Electron Telescope (PET)
 - has series of eight solid state detectors
 - detects energetic electrons (0.4-30 MeV) and H⁺/He⁺ (18-250 MeV)
- SAMPEX provides pitch angle information only when in spin mode
 - this mode periodically 5/1996-5/1998, 12/1999-2/2000
- Sample spectrogram of SAMPEX electron observations with Dst--

Li et al., 2001

Method and Initial Results

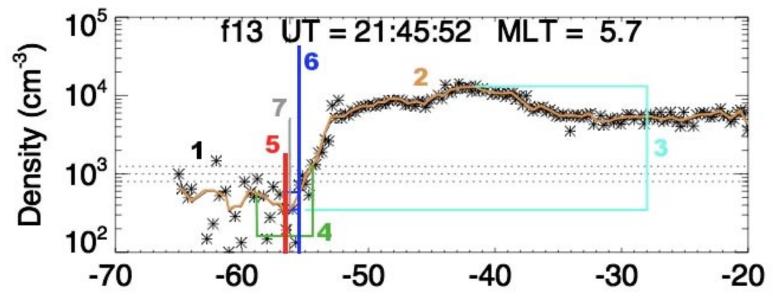
- Background
 - plasmasphere, LIT, radiation belts
- Instruments
 - DMSP, IMAGE, SAMPEX
- Method and Initial Results
 - use of DMSP observations of LIT to identify plasmapause
 - map plasmapause locations to equatorial plane
 - compare with IMAGE plasmapause observations
 - statistical studies in combination with SAMPEX observations
- Continuing Research
- Conclusion

Method and Initial Results


- Initial results from two case studies:
 - 1 day, 18 June 2001 (day 169)
 - 72 days, 21 March-31 May 2001 (days 80-151)
 - these periods selected to match availability of processed IMAGE data (J. Goldstein)

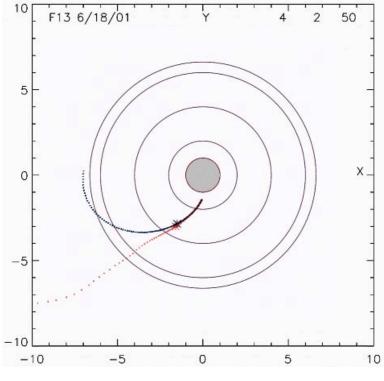
Method: algorithm for LIT ID

- [1] use DMSP [H+] data from 20-65 deg MLAT N/S
- [2] smooth data with N-pt. average (N=5)
- [3] if maximum dynamic range is less than a factor of 10, ignore pass
- some passes rejected manually (too noisy, no LIT, etc.)



Method: algorithm for LIT ID

- [4] manually select range near LIT minimum
- [5] algorithm picks density minimum within range
- [6] moving equatorward, PP is where density is factor of F
 greater than at minimum (F=1.5)
- [7] manually select boundary as check on automatic ID

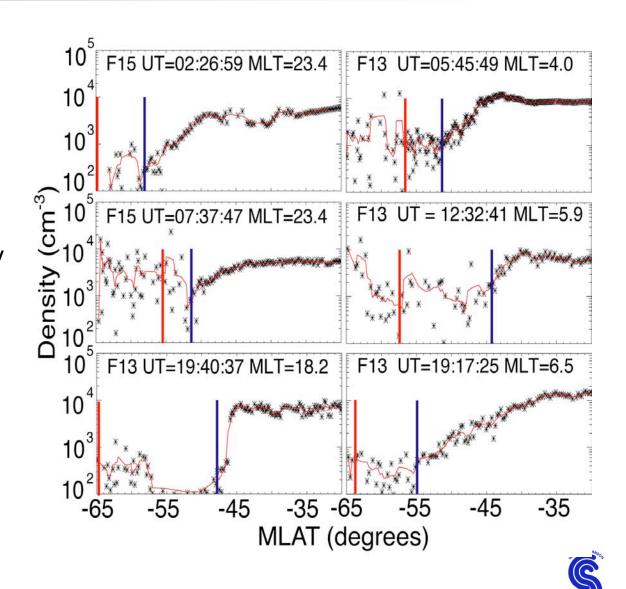

Method: mapping to equatorial PP

- Map plasmapause ID along field lines from DMSP location to high altitude plasmapause
- Use both internal and external fields from GEOPAK

- internal: IGRF 2000

external: Tsyganenko 2001 (with ACE data for input)

 Figure shows orbit track from one DMSP pass mapped to SM X-Y plane with (red) and without (blue) external field



Initial results: LIT identifications


- Plots show DMSP H⁺ density vs. MLAT, smoothed density in red
- Vertical red line is equatorward electron precipitation boundary
- Semi-automatic procedure picks PP identification at blue line

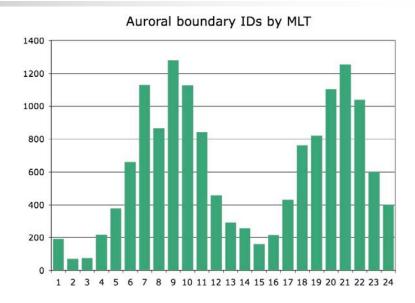
Initial results: mapped IDs from 1-day study

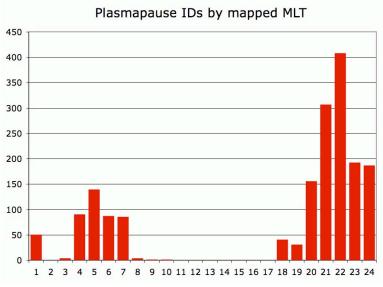
- For 18 June 2001, plots show IMAGE EUV images of plasmasphere projected to SM X-Y plane, Sun at right
- Red lines show mappings of DMSP orbit track to SM X-Y plane, red cross shows identified plasmapause

Initial results: IDs from 72-day study

Statistics for 72-day study (2001 days 80-151):

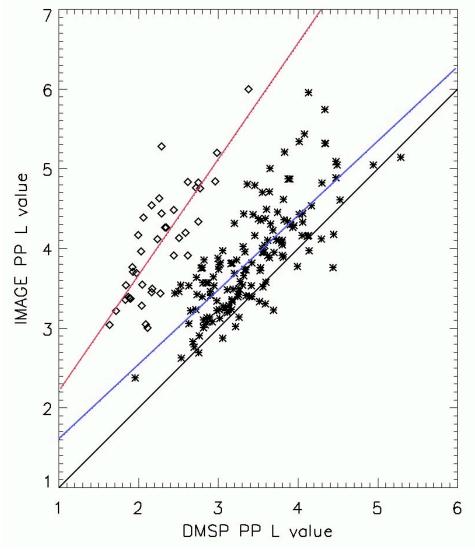
all passes	14,894	(100%)
rejected by program	8,286	(55.6%)
(dynamic range too low)		
rejected manually before analysis	4,631	(31.1%)
(data too noisy, no visible LIT)		
rejected manually after analysis	187	(1.3%)
(>2 deg difference from manually chosen ID)		
retained plasmapause IDs	1,790	(12.0%)


Average of 25 plasmapause IDs per day (range 0-47)



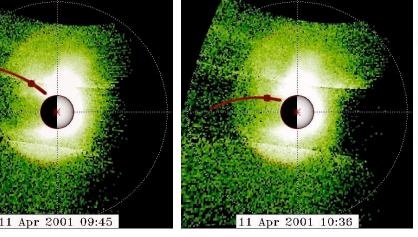
Initial results: IDs from 72-day study

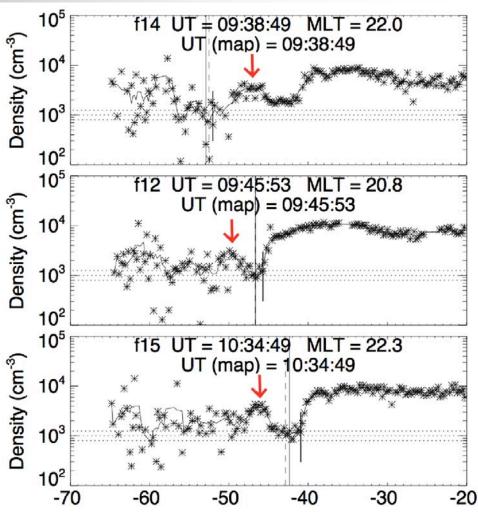
- DMSP orbit orientation imposes preferred MLT distribution
 - dusk-dawn or 0930-2130 at equator
- For LIT to be identified, must be above O⁺ transition height and have >~5% H⁺
 - winter and/or nightside passes preferred
- Magnetic fields lines at high altitudes tend to be stretched anti-sunward
- Results--preferred locations for equatorial mappings of PP IDs



Initial results: comparison to IMAGE

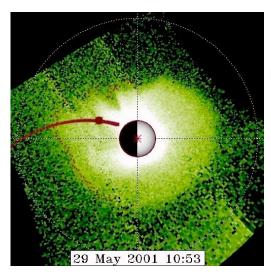
- 72-day study yielded 187 comparisons to IMAGE
- two clusters in data:
 - good match cluster,
 N=147 (79%), mean
 difference ~0.5 L
 - mismatch cluster, N=40 (21%), mean difference ~1.7 L
- examination of mismatches suggests DMSP method is observing plasmasphere structures (plumes, notches, etc.)

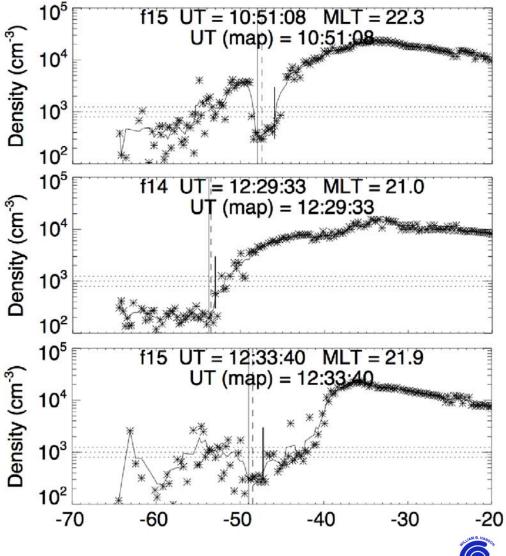




Initial results: mismatches day 101

- day 101: 6 mismatches
- three density plots (2 mismatches, 1 good) show structure, possible plume
- IMAGE EUV images suggest some density structure within the outermost density gradient

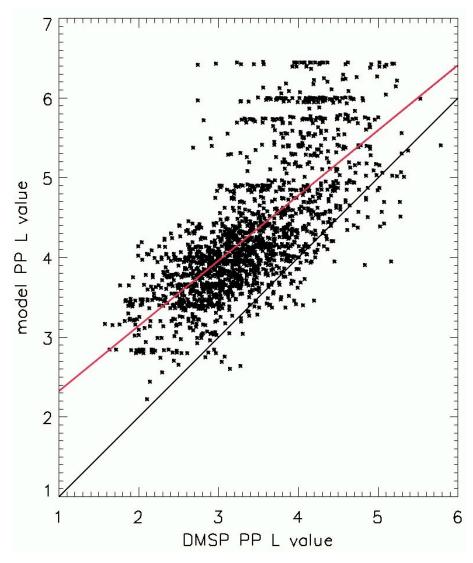



Initial results: mismatches day 149

- day 149: 2 mismatches, several good matches at nearby times/MLTs
- several DMSP density plots show structure
- IMAGE EUV image clearly shows one notch

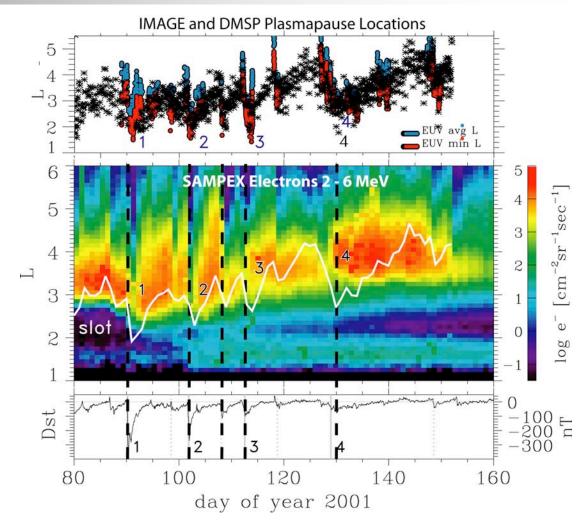
 appears that some DMSP passes mapped to inside of notch, some

to outside



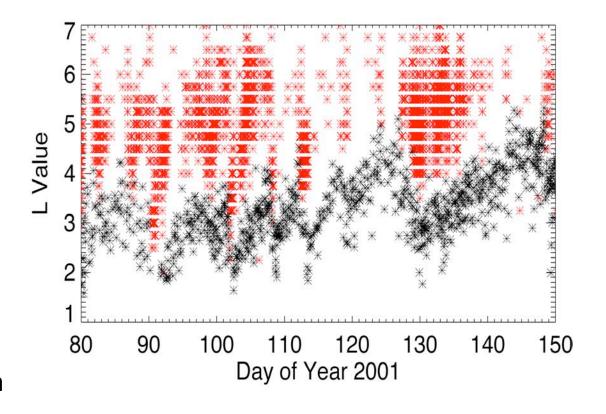
Initial results: comparison to PP model

- comparison to O'Brien-Moldwin model (2003, GRL, 30:1152), parameterized by Dst and MLT
- for lower L, model PP is about 1 L value greater than DMSP PP
- for L>~4, results diverge
 - model may not extend to Dst ~ 0; DMSP ID method may have difficulty with diffuse plasmapause



Initial results: comparison to SAMPEX

- Using 1790
 plasmapause IDs from 72-day study
- top: PP IDs from DMSP (black) compared to IMAGE
- middle: daily average of our PP IDs (white) compared to SAMPEX electron flux
- Correlation in PP movement and Dst, movement of inner edge of outer radiation belt


base image from Goldstein et al., 2005

Initial results: comparison to SAMPEX

- red: SAMPEX-identified microbursts
 - microbursts are short
 (~1 s) bursts of
 precipitating relativistic
 electrons observed at
 low altitudes; found
 associated with
 whistler chorus
 (O'Brien et al., 2003,
 JGR, 108:1329)
- black: all DMSP-based plasmapause IDs
- shows strong correlation in radial dynamics

Continuing Research

- Background
 - plasmasphere, LIT, radiation belts
- Instruments
 - DMSP, IMAGE, SAMPEX
- Method and Initial Results
 - use of DMSP observations of LIT to identify plasmapause
 - map plasmapause locations to equatorial plane
 - compare with IMAGE plasmapause observations
 - statistical studies in combination with SAMPEX observations
- Continuing Research
- Conclusion

Continuing Research (1)

- LIT identification algorithm
 - make the process more automated
 - revise selection criteria
- mapping to equatorial plasmapause
 - automate processing of ACE source data
 - investigate possible sources of propagated data
- comparisons to IMAGE, other datasets
 - complete examination of 72-day study comparisons
 - compare to other IMAGE data as available
 - possible comparison to POLAR in situ observations of high altitude plasmapause (limited to coincident observations on same field line)

Continuing Research (2)

- build multi-year database
 - potentially over 100,000 PP IDs for 10+ years (one full solar cycle)
- statistical studies using plasmapause IDs and SAMPEX observations
 - case studies/epoch analyses
 - long-term correlation/time offset analyses
 - correlation studies for loss cone populations/microbursts
 - possible data assimilative studies

Continuing Research (3)

- case studies/epoch analyses
 - average PP/radiation belt response to stormtime perturbations
- statistical comparison of mean PP, mean radiation belt location with time offset
 - different characteristic response times for erosion/recovery phases
 - can evaluate response times to address PP/radiation belt linkage
- correlate PP location to locations/times where loss cones are populated
 - pitch angle observations available for periods in 1996-1998, 2000
 - correlate PP location to locations of observed microbursts
- combine PP locations with empirical PP model to estimate fractions of electron drift orbits inside/outside plasmasphere
 - interest from LANL RAM team in this
 - prospective theoretical investigation: constraint wave characteristics contributing to particle energization/loss

Plan of work

- fall 2007--complete algorithm; continue comparisons to IMAGE (and POLAR?); continue building database
- spring 2008--conduct case studies of comparisons to SAMPEX
- summer 2008--analyze trends/biases; complete database
- fall 2008--complete database, multiyear statistical study with SAMPEX; finish dissertation
- output:
 - PP database, available for other groups
 - two journal articles (case studies with SAMPEX; long-term statistical study with SAMPEX)
 - one article submitted to GRL (Anderson et al., 2007)

Conclusion

- We have obtained initial results from a method of identifying the plasmapause using DMSP observations of the LIT.
- Comparisons show good correlation with IMAGE plasmapause IDs and SAMPEX radiation belt flux and microburst observations.
- This approach will be applied to full DMSP database: 10+ years of observations--covering full lifetime of SAMPEX.
- Database will be used for event studies and to statistically analyze correlation of plasmapause-radiation belt dynamics.

Acknowledgements

- Phil Anderson
- Greg Earle, Marc Hairston, Rod Heelis, Xinchou Lou, Brian Tinsley
- Jerry Goldstein
- UTD physics faculty, staff, and graduate students
- my wife

