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Interferometric detectors such as LIGO are now being used in searches for astrophysical grav-
itational waves. One search seeks to test for possible gravitational wave bursts correlated with
external astrophysical triggers (e.g. gamma ray bursts). Statistical tests are necessarily used since
these searches involve detector correlations with signal amplitude comparable to or less than the
noise RMS. This study compares various statistical tests for signal detection in an externally trig-
gered burst search and identifies optimal detection strategies. Tests initially compared include the
likelihood ratio test and various components of the likelihood ratio statistic for two co-located co-
aligned detectors. Performances were found from analytic derivations for ideal noise (stationary
Gaussian) and Monte Carlo simulations were used for both ideal noise and a realistic noise model.
The noise model used was mixed Gaussian, in which samples are drawn from a mixture of two
Gaussian distributions, an individual sample having a small probability of being drawn from the
larger variance distribution (“noisy” samples). In the case of realistic noise, the cross-correlation
test significantly outperformed the likelihood ratio test for low signal-to-noise ratios even if “noisy”
samples comprised less than one percent of the signal time series. Optimized likelihood ratio tests
were then obtained analytically for generalized cases including two detectors and multiple detectors,
of varying locations and orientations, with the aim of extracting the cross-correlation part. This
identified issues with the likelihood ratio approach in which, absent additional constraints, the test
does not converge to cross-correlation for a pair of mis-aligned detectors. Cross-correlation terms are
present, however, in the optimized test for detector networks of three or more. An expression is ob-
tained for term coefficients in a general detector network. This was used in a computer code written
to compare the magnitudes of individual cross-correlation terms in a multi-interferometer network
of real detectors (including LIGO, VIRGO, GEO, and TAMA). The output shows in particular
which pair-wise cross-correlation term contributes the most as a function of source direction. For
such networks, relative contributions of individual cross-correlation terms are compared for various
combinations of existing interferometer detectors. Directions for further development are discussed.
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I. INTRODUCTION

This project is concerned with developing optimal de-
tection strategies for a triggered burst search for gravi-
tational waves. Such a search seeks to identify a short
burst of gravitational waves potentially associated with
an independently observed trigger.

Background for this research will begin with an intro-
duction to general relativity and the theory of gravita-
tional waves. This is followed by a review of potential
astrophysical sources of gravitational waves (including
the potential amplitude of resulting signals) and the re-
lationship to gamma ray bursts. Then we review types of
gravitational wave detectors, beginning briefly with res-
onant bar detectors followed by interferometer detectors.
We consider issues with direction-dependent sensitivity of
interferometer detectors followed by the nature of noise in
such detectors and the statistical methods for extracting
signals from noise.

The research began by comparing several statistical
tests for a pair of identical, co-located and co-aligned
detectors. The first objective was to compare the per-
formance of the likelihood ratio test and the cross-
correlation test under different noise conditions (a test
based on the sum of the individual variances was also

used). Analytic results and a Monte Carlo simulation
code were used in the case of ideal Gaussian noise, affirm-
ing that the likelihood ratio test performs best. Having
validated the performance of the Monte Carlo code, it
was used to compare the tests in the presence of more re-
alistic noise, modeled as a mixture of two Gaussian distri-
butions. This demonstrated that for low signal-to-noise
signals, the cross-correlation test is superior for such non-
Gaussian noise.

The next objective was to develop a cross-correlation-
based test for optimally combining the detector outputs
within a generalized network. This was accomplished by
computing the likelihood ratio test for a general network,
then extracting the cross-correlation part. In the case of
a two-detector network, the likelihood ratio statistic ob-
tained was merely the sum of the auto-correlation terms
with no cross-correlation component. Reasons for this
result are discussed. For networks of three or more mis-
aligned detectors, cross-correlation terms were obtained
and expressions are given for such generalized networks.
Some simplifying assumptions are identified, including
ignoring the effect of unknown polarization angle and as-
suming that the detector noise is white. A computer
code was written to compare the magnitudes of the con-
tributions of individual cross-correlation terms for real
networks. Using this code and idealized comparisons of
the LIGO, VIRGO, TAMA, and GEO detectors, the rel-
ative weights of cross-correlation terms are computed for
networks comprising various combinations of these detec-
tors. Several directions for further work are identified, in-
cluding incorporating physically appropriate constraints
to address the breakdown in the two detector case, and
developing the analytic results to incorporate unknown
polarization angle and differing noise power spectral den-
sity among detectors.

II. GRAVITATIONAL WAVES
A. Relativity

Einstein’s special relativity invokes two postulates: all
inertial frames are equally valid (in terms of say, physi-
cal observations), and the speed of light is constant for
all observers. From these postulates it can be shown
that time should be considered a dimension on compa-
rable footing with the three spatial dimensions, and that
these space-time dimensions are “mixed” for different ob-
servers. More specifically, when translating between a
pair of inertial frames moving relative to each other, spa-
tial coordinates in one frame will be a function of both
spatial and time coordinates in the other frame.

Space-time in special relativity is then a four-
dimensional manifold referred to as Minkowski space.



The Minkowski metric applies to this space and is
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As an application, consider the norm of a vector V# in
Minkowski space:

V-V =0, VAV = “VOVOLVIVILVAVELVEVE (2)

where VO is the time dimension of V and V1, V2, and
V3 are the spatial dimensions of V. V is called timelike
if this norm is negative, spacelike if the norm is positive,
and null if the norm is zero. From this description comes
the conclusion that the speed of light is a physical limit on
communication of any form between locations in space-
time, not merely a limit on the speed of matter.

General relativity proceeds to explain gravitation in
terms of curvature of space-time, this curvature being
induced by the presence of mass-energy. This curvature
is described by the Einstein field equations, which may
be expressed as

G*P = §nTP (3)

where G is the space-time curvature tensor and T8 is
the stress-energy tensor (including the presence of mass-
energy). Since these four-by-four tensors are symmetric,
this expression describes ten coupled non-linear partial
differential equations. Note that this formulation uses
geometrized units (i.e. G = 1 and ¢ = 1) and sets the
cosmological constant to 0.

As discussed by Misner, Thorne, and Wheeler [1], this
description of gravitation in terms of space-time curva-
ture models space-time as a differentiable manifold. This
manifold is locally flat or Minkowskian, but in general is
globally curved. The fact that the manifold is locally
flat is an expression of the equivalence principle, which
states that freely falling frames are equivalent to inertial
frames. In postulating such an equivalence, general rela-
tivity replaces the concept of a gravitational force in the
freely falling frame with that of the influence of space-
time curvature.

In the Newtonian formulation of physics, a particle
moving under the influence of no forces moves in a
straight line. In general relativity, a particle or free test
mass moving under the influence of no forces moves along
a geodesic, which is locally a straight line but conforms
to any curvature of the space-time manifold. Such a
geodesic is “time-like”. This space-time curvature takes
the place of gravity (which was a force in the Newtonian
formulation).

B. Gravitational waves

Gravitational waves are a consequence of general rela-
tivity and may most simply be described as ripples in the

curvature of space-time. They were immediately recog-
nized as implications of the theory, although it was some
time before an adequate theory of gravitational waves
was developed. Given that changes in space-time curva-
ture can only be communicated from the source at the
speed of light, such waves represent the delayed effect at
a distance of a change in space-time curvature—which in
turn results from a change in mass-energy configuration.

A more specific development follows, based on the dis-
cussion by Schutz [2]. If we consider the Einstein equa-
tions in vacuum (7% = 0) in a weak field approximation

and gauge condition E?;B =0, we have
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with k, necessarily a null one-form and A®® necessarily
orthogonal to ky. This solution is a plane transverse wave
with direction k, and amplitude the real part of A5,
The fact that k., is a null one-form corresponds to the
fact that the propagation speed of the gravitational wave
is the speed of light. It can be shown that it is possible
to change the gauge to express h in a transverse-traceless
(TT) form such that
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i.e. with only two independent constants. These two
constants describe two possible polarizations of gravita-
tional waves; to understand these polarizations we first
consider the effect of a gravitational wave.

The effect of gravitational wave is to stretch or com-
press the space-time metric. This is only observable by
comparison of two (or more) separated free test masses.
In directions perpendicular to the direction of wave prop-
agation, the separation of a pair of test masses will os-
cillate about the rest separation (given an appropriately
oriented pair). Consider a singly polarized gravitational
wave propagating in a direction perpendicular to the cir-
cular array of test masses in figure 1. Test masses along
one diameter oscillate radially about their rest positions,
while masses along the perpendicular diameter do like-
wise except out of phase. The alternate polarization is
depicted in figure 1 and is like the first except rotated by
45°. These two polarizations are called plus (+) and cross
(x) polarizations. Note that this contrasts with the case
of electromagnetic waves, where the two polarizations dif-
fer by 90°: this difference reflects the quadrupole nature
of gravitational sources.

It may be noted that alternate theories of gravita-
tion exist which provide for gravitational waves; how-
ever, general relativity is uniquely consistent with obser-
vations, assumes no prior geometry to space-time, and
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FIG. 1: Gravitational wave polarizations: Effect of singly-
polarized gravitational waves propagating perpendicular to
a ring of free test masses, for + polarization (top) and x
polarization (bottom).

invokes no force to explain gravitation (Misner, Thorne,
and Wheeler [1]). Observations of gravitational waves
would potentially provide tests of the general theory of
relativity.

C. Gravitational wave sources

The most detectable gravitational wave sources are as-
trophysical sources, and specifically such sources involv-
ing relativistic motion and/or compact masses. As an
illustration, Misner, Thorne, and Wheeler [1] calculate
the power radiated by a hypothetical laboratory genera-
tor of gravitational waves. For a 20-m long, 490-ton steel
beam rotating at a speed constrained by tensile strength,
they obtain a power of Lgw = 2.2 x 10722 erg/s. This
would give a flux of about 2 x 1073! erg/s cm? at a
distance of 100 m. In contrast, their calculated flux of
gravitational wave energy from some representative bi-
nary stars is of order 2 x 107!2? erg/s cm?. Detectabil-
ity weighs even more in favor of astrophysical sources
when it is considered that methods currently devised for
potentially detecting gravitational waves are sensitive to
wave amplitude, not wave energy. Since wave amplitude
is inversely proportional to source distance (in contrast
to the inverse of square of distance in the case of wave
energy), the advantage of nearby sources is diminished.
Note that due to the conservation of mass-energy and
momentum, gravitational waves can only be produced
by sources which are not spherically symmetric. In re-
viewing possible sources, we will highlight those relevant
to a triggered burst search.

The orbital motion of binary compact objects, such
as black holes and neutron stars, would produce circu-
larly polarized gravitational wave signals of a periodic
long-term nature. Consider a pair of neutron stars or
stellar-mass black holes orbiting each other in a circular
orbit. For such objects the maximum strain amplitude h

is given by Thorne [3] as

h=41x10"2 VEeM Y 10 Mpc)) /100 Hz
MO M@ r f

(7)
where M = M; + M, is the total mass of the binary
components, y = M;M,/M is the mass function, r is
the source distance, and f is the gravitational wave fre-
quency which is twice the orbital frequency. Maximum
possible values of f are of order 1 kHz for binary neutron
stars. (Note that radiation of gravitational waves will
cause such binaries to inspiral; this is discussed below.)

Other binary systems would produce gravitational
waves. Binary white dwarfs would be weaker but far
more common sources; collectively, they may contribute
to a stochastic background of gravitational waves at fre-
quencies well below 1 Hz (Benacquista et al. [4]). An-
other potential source of stochastic gravitational waves
is primordial gravitational waves, representing a relic of
the big bang. Such gravitational waves would be analo-
gous to the cosmic microwave background in the electro-
magnetic spectrum. Observation of the energy-frequency
spectrum of such gravitational waves would provide con-
straints on big bang models.

Pulsars are also potential periodic sources. A rotat-
ing neutron star will produce gravitational waves if the
star is not axisymmetric, which could result from defor-
mations in the solid crust or deformations resulting from
strong magnetic fields or rapid rotation. Observed rates
of pulsar spindowns may be used to calculate upper lim-
its on the radiation of gravitational waves if it is assumed
that all dissipated rotational energy is converted to grav-
itational waves. Such upper limits for known pulsars are
of order h = 10724 to 10726 at frequencies between 10
Hz and 1 kHz (Allen and Woan [5]). Palomba [6] gives
tighter constraints by modeling the combined contribu-
tions of electromagnetic and gravitational radiation to
spindown, finding an upper limit of A = 5.5 x 10~2% in
the case of the Crab pulsar.

For the binary objects discussed above, gravitational
waves carry energy from the system, resulting in their in-
spiral and eventual merger into a single object—a black
hole in the case of systems of neutron stars or black holes.
Such inspiral (well short of merger) was first indirectly
observed in the case of binary pulsar PSR B1913+16, dis-
covered by Hulse and Taylor. Timing observations of the
observable pulsar component demonstrated inspiral at a
rate consistent with that predicted based on gravitational
wave energy removal (Weisberg and Taylor [7]). As the
binary components spiral closer together, the rate of in-
spiral will increase, causing the gravitational wave signal
to rapidly increase in both frequency and amplitude in
the last minutes before final inspiral. The binary compo-
nents would finally approach to within the closest stable
orbit, leading to their merger into a single black hole.
Following the very brief merger (lasting of order ms),
a brief ringdown would occur as the black hole’s event
horizon stabilizes. The inspiral and ringdown phases are




fairly well modeled, but the merger phase requires nu-
merical techniques to estimate gravitational wave signals
produced.

Cutler and Thorne [8] indicate that for binary black
hole mergers with component black holes much larger
than 10M), the merger and ringdown is expected to
represent most of the gravitational wave signal, in con-
trast to the case for binaries with smaller black holes or
neutron stars. For gravitational waves in the frequency
range of maximum sensitivity for first-generation detec-
tors, they suggest strain amplitudes of order

h

5x 10723 (M)TMpc> for neutron stars,
h = 3x10 2 (mﬁm) for two 10 My black holes.

Burgay et al. [9] recently identified pulsar PSR J0737-
3039 as a binary neutron star system estimated as only 85
Myr short of inspiral merger. By incorporating this and
other known systems into models of binary neutron star
populations and detectability, Kalogera et al. [10] obtain
most probable rates of detectable inspirals of 0.004 to
0.2 per year for first-generation detectors and 20-1000
per year for planned second-generation detectors.

Similarly, stars or stellar remnants orbiting supermas-
sive black holes in galactic cores—or orbiting intermedi-
ate black holes in globular clusters—will spiral into the
black hole. Although stars would generally be tidally
disrupted before the final plunge, the orbital motion and
inspiral is still a potential source of gravitational waves.
Such plunges would give waves with strain amplitude and
frequency of order

_ _o1{ M.\ (10 Mpc
h = 2x10 21(M®>( . ) (8)
f=10" H%%) (9)

(Thorne [3]) where M is the mass of the supermassive
black hole (10° to 10°M¢ for suspected galactic core
black holes) and M, is the mass of the star.

Supernovae from stellar collapse are another potential
source, whether the end product is a neutron star or a
black hole. If the collapse is spherically symmetric, no
gravitational waves would be produced. However, the
star itself is generally non-spherical due to its rotation,
contributing to non-spherical collapse. In order to pro-
duce significant gravitational waves, there must be de-
viations from even this rotational axisymmetry. For su-
pernovae which produce a neutron star, additional asym-
metries may result from core bounce, or the production
of a shock wave as infalling material impacts the newly
formed neutron star (this shock wave eventually produces
the supernova explosion), from convection between the
neutron star surface and the shock front, and from resul-
tant asymmetries in neutrino emissions. Recent models
suggest that the strongest source of gravitational waves

within a supernova collapse could be neutrino-induced
convection and not core bounce. Fryer and Warren [11]
and Fryer, Holz, and Hughes [12] report maximum am-
plitudes, based on their models, of order

10 Mpc)

- (10)

h=(1to4) x 10—25(

Supernovae and compact binary inspiral are the most
promising burst sources for current searches, although it
should be noted that burst searches are generalized to
detect bursts from previously unrecognized sources. Su-
pernovae and binary inspiral are known candidates for
triggered burst searches because the presumed produc-
tion of gravitational waves is coincident with indepen-
dently observable phenomena. Supernovae produce an
obvious multispectral electromagnetic signature, but this
follows at a significant time delay from the gravitational
wave signal: the optical signature of a supernova is as-
sociated with explosion of the star’s outer layers due to
the shock wave from core bounce and from decay of ra-
dioactive elements produced in the explosion. However,
neutrino emissions and gravitational waves signals would
be more nearly coincident in time, so that detection of
neutrinos would better constrain the possible time of a
gravitational wave signal (Arnaud et al. [13]). Binary
inspiral as well as some supernovae may be associated
with gamma ray bursts, as discussed below.

D. Gamma ray bursts

Astronomical gammas ray bursts (GRBs) were first re-
ported in 1973, but only recently have observations begun
to identify their sources. The first GRB was detected in
1967 by Vela satellites, military satellites tasked with de-
tection of terrestrial nuclear explosions. Besides being of
short overall duration (of order seconds or less), GRBs
were observed to vary in intensity over periods of order
ms. Since causality arguments lead to the conclusion that
the timescale of such variability must set an upper limit
on the light-travel time across the source region, this con-
strained GRB source regions to sizes of at most a few hun-
dred km. Subsequently other satellites made additional
GRBs detections, and in a few cases X-ray emissions
were also observed. However, little else was known until
the beginning of observations by the Compton Gamma-
Ray Observatory (CGRO), in orbit from 1991 to 2000.
The Burst and Transient Experiment, or BATSE sensor,
aboard Compton identified a total of about 2700 GRBs.
This data indicated a uniform sky distribution, eliminat-
ing any association with the Milky Way Galaxy. BATSE
data further indicated that GRBs included two distinct
classes: “short” GRBs with durations less than 2 s (some
less than 0.1 s) and “long” GRBs lasting more than 2 s
up to a few minutes (Mészaros [14]).

Follow-up observations in other electromagnetic en-
ergies eventually provided additional information on



GRBs. The Gamma Ray Burst Coordinates Net-
work (GCN) was developed to automatically notify as-
tronomers of GRB detections to aid in rapid followup
(Barthelmy [15]). X-ray flashes (XRFs) have been ob-
served and linked to GRBs. With BeppoSAX satel-
lite and other satellite observations in X-rays, improved
source locations for GRBs were obtained. Such informa-
tion allowed observations of optical afterglows of GRBs
beginning in 1997. Automated systems involving the
GCN have improved the response time, as illustrated
by the ROTSE-1 team which obtained automatic obser-
vations of GRB 990123 in 1999 within seconds of the
gamma ray burst itself. In turn, afterglow observations
served to identify presumed host galaxies for some GRBs,
with redshift measurements giving typical distances of
several Gpc. With GRBs established as occuring at cos-
mological distances, energy releases could be calculated
as up to 10%* ergs, or the energy equivalent of one solar
mass, if the energy emission was anisotropic. Another
key development was development of evidence linking
GRBs and supernovae. This connection was proposed
in the case of GRB 980425 and SN 1998bw in 1998, but
established in the case of GRB 030329 in 2003, based
on observations of the afterglow (Willingale et al. [16]).
As of 2002 over 40 GRB afterglows had been observed,
with host galaxies identified in over 30 cases (see review
by Mészéros [14]), and through 2004 associated redshift
measurements have been obtained for over 30 GRBs.
Spacecraft currently providing GRB obserations include
HETE, INTEGRAL, RXTE, and Ulysses. NASA’s Swift
satellite to be orbited in late 2004 is expected to sig-
nificantly extend detection and observation capabilities.
During its two year mission, Swift’s gamma-ray detec-
tors will provide arc minute accurate positions within
about 10 s of a GRB, then direct its onboard X-ray and
optical/UV telescopes onto the GRB within 20-70 s for
follow-up observations (NASA [17]).

Together, these observations have led to collapsar mod-
els for long GRBs which explain them as a special type of
supernova. In these models, the core of a massive collaps-
ing star forms a black hole, and rapidly infalling material
forms an accretion disk. Either due to the star’s rapid
rotation or strong magnetic fields or both, particles and
radiation preferentially escape in jets perpendicular to
the accretion disk. As these jets collide with stellar mate-
rial or surrounding gas at Lorenz factors up to 1000, they
produce beamed gamma-ray and X-ray bursts. While the
degree of beaming remains unclear, beaming is demon-
strated by the intensity decay of GRB afterglows. The
rate of this decay abruptly increases at a particular point
in time, corresponding to the end of spreading of the rela-
tivistic beaming effect. It is also suggested that observed
X-ray flashes are slightly off-axis GRBs. In attempting
to relate observed energy fluxes to energy available in a
stellar collapse, beaming is a key factor. If beaming oc-
curs, this would reduce the required source energies by a
factor of 100 or more, to levels that correspond with such
collapse models.

Short GRBs, however, remain poorly modeled because
of the lack of follow-up observations that might provide
observational constraints, this lack due to their short du-
ration. One possibility is that they result from the final
merger of a binary neutron star into a black hole, ei-
ther with or without gamma rays preferentially emitted
in jets perpendicular to a short-lived accretion disk. Al-
ternately, the source could be unrecognized in nature.

In the cases of both types of GRBs, they appear to be
promising sources of gravitational waves, given the indi-
cations of relativistic motion of compact masses. They
are currently the most studied event for triggered burst
searches of gravitational waves due to their frequency,
the current ability to identify source location, and the
relatively short time delay between the GRB trigger and
the gravitational wave signal. Observable GRBs are typi-
cally at distances of several Gpc, much more distant that
some other potential burst sources.

III. DETECTION OF GRAVITATIONAL WAVES
A. Introduction

Expected gravitational wave sources will produce sig-
nals of order h = 10~2! or less. Detection of such grav-
itational waves presents significant challenges. Consider
that even for test masses separated by the diameter of
the Earth, the above strain produces a change in rela-
tive displacement which is an order of magnitude smaller
than an atom. Two principal methods have been pursued
to detect such signals: bar detectors and interferometric
detectors. These will be described, with subsequent dis-
cussion focusing on interferometric detectors to cover an-
tenna patterns, noise, data analysis, and detection tests.

B. Bar detectors

Resonant bar detectors were the first proposed means
of detecting gravitational waves. Consider a bar with
its axis perpendicular to a gravitational wave’s direc-
tion of propagation. For gravitational waves of a fre-
quency near the natural vibrational frequency of the bar,
the gravitational waves would excite vibrations in the
bar. These mechanical oscillations can be measured with
transducers. Weber first experimented with such bars in
the 1960s; while he claimed coincident detections (Weber
[18]), they were unconfirmed by other observers. How-
ever, similar detectors were subsequently built by several
independent groups. These second-generation bar detec-
tors are operated in vacuum chambers and cryogenically
cooled to minimize thermal noise.

Several such bar detectors are in operation, including
ALLEGRO in Louisiana (Heng et al. [19]), AURIGA
(Zendri et al. [20]) and NAUTILUS in Italy (Astone et al.
[21]), EXPLORER in Switzerland (Astone et al. [22]),



and NIOBE in Australia (Coward et al. [23]). (See ap-
pendix B for additional information.) These all have peak
sensitivities near 900 Hz with the exception of NIOBE
which has peak sensitivity near 700 Hz. These five de-
tectors form the International Gravitational Event Col-
laboration (IGEC) in seeking coincident signals (Astone
et al. [24]). Correlations with interferometric detectors
are feasible at these narrow bands. Figure 2 is an image
of the ALLEGRO bar detector taken while the cryogenic
container was open for maintenance, viewing from one of
the bar.

FIG. 2: ALLEGRO bar detector: View of ALLEGRO bar
detector with cryogenic dewar open. Image from ALLEGRO
[25].

Resonant detectors of other shapes have been pro-
posed, specifically spherical detectors. None of these
are yet in operation. Such detectors would have
omni-directional sensitivity, in contrast to bar detectors
(Pizzella [26]).

Bar detectors are severely limited by the very narrow
band sensitivity, confined to near the natural resonance
frequency of the bar. Interferometers are not so limited.

C. Interferometric detectors

The first prototype laser interferometric detector was
completed in 1972 by a team led by Forward (Forward
[27]). Such detectors employ a Michelson interferome-
ter, with the laser beam split at a corner test mass and
reflected from a pair of orthogonally located mirror test
masses at the end of each arm. The passage of a gravita-
tional wave (from an appropriate direction) will induce
relative changes in the length of the arms, i.e. the dis-

tance between each arm’s end test mass and the corner
test mass. The recombined laser beam’s interference pat-
tern is then used to compare arm lengths and potentially
detect very slight changes in relative length.

In describing the practical aspects of such detectors we
consider in particular those of the LIGO project (Barish
and Weiss [28]). LIGO, for Laser Interferometer Gravita-
tional Wave Observatory, is a project involving three de-
tectors at two well-separated locations, one at Hanford in
Washington state (LIGO Hanford Observatory or LHO)
and one near Livingston, Louisiana (LIGO Livingston
Observatory or LLO). LIGO began collecting scientific
data during its first science run in August-September
2002.

Figure 3 is an aerial view of the LIGO Livingston Ob-
servatory, showing the corner station with one 4-km arm
extending towards the horizon.

3

FIG. 3: LIGO Livingston Observatory: Aerial view of LHO
site. Image from LIGO [29].

In practice, each arm is set up as a Fabry-Perot cav-
ity, with the laser beam trapped between the respective
end mirror and a semi-transparent mirror near the cor-
ner beam splitter (see figure 4). The arm lengths are ad-
justed to produce destructive interference of the recom-
bined beam at the detector. A recycling mirror located
between the laser and the beam-splitter further increases
the laser power within the interferometer and reduces
noise.

For each LIGO site, the interferometer arms are 4 km
in length and contained in an ultrahigh vacuum assem-
bly. Test masses/optics are suspended within this as-
sembly and seismically isolated by a four-layered passive
isolation apparatus (Barish [30]). The entire system is
isolated from electrical noise, and a variety of sensors
monitor the internal and external environment in terms
of potential noise sources. The LHO facility contains two
independent interferometers within the same vacuum as-
sembly, having arm lengths of 4 km (LHO-4k) and 2 km
(LHO-2k).

Several other such detectors are in operation as well,



2. end mirror

recycling mirror Fabry-Perot cavities

" / ’ |nput mirrors
laser
photodetector \ \

beam splitter - |
end mirror

FIG. 4: Laser interferometer configuration

notably VIRGO in Italy (Acernese et al. [31]), GEO in
Germany (Willke et al. [32]), and TAMA-300 in Japan
(Ando et al. [33]). AIGO (Blair [34]), an additional
project in Australia operated by ACIGA, is under devel-
opment; currently it is operating a testbed version with
80 meter arms. Data regarding these detectors are listed
in appendix B. VIRGO, GEO, and TAMA were com-
pleted between 2001 and 2003. LIGO, GEO, and TAMA
have run coincident searches (VIRGO has not yet oper-
ated in science mode). At this stage, the interferometers
generally gather scientific data continually only during
science runs of limited duration, with engineering work
performed between these runs.

These detectors have maximum sensitivities in the
range of 50 Hz to a few kHz. The limitations will be dis-
cussed further in section 3.5 in reference to noise. GEO,
however, is being converted to a dual-recycling configu-
ration which will give it a narrow band sensitivity quite
different in form from other IFOs (Malec et al. [35]). The
general similarity of the LIGO, VIRGO, and TAMA de-
tectors has implications for coincident analysis that will
be discussed below.

A space-based interferometric detector is being de-
veloped by NASA and ESA. This Laser Interferometer
Space Antenna (LISA) (Danzmann and Riidiger [36])
would comprise three probes in solar orbit roughly form-
ing a equilateral triangle 5x 106 km on a side. Each probe
would serve as both end test mass and laser source. LISA
would be sensitive to gravitational waves of far lower fre-
quencies (1073 to 10~! Hz) than the ground-based de-
tectors currently in operation.

During the anticipated 3-year LISA mission, the de-
sign sensitivity would guarantee detection of a variety of
gravitational wave signals, such as signals from binary
supermassive black holes or stars orbiting supermassive
black holes. At the lower end of its sensitivity window,
LISA will be limited by the stochastic noise from galactic
white dwarf binaries (Benacquista et al. [4]).

D. Orientation and antenna patterns

An individual interferometric detector cannot identify
the direction of a gravitational wave source. However,
the sensitivity of such a detector to a given gravitational
wave is dependent on the detector’s orientation relative
to the direction of the source. Consider a detector with
the corner station located at the origin and detector arms
oriented along the positive z- and y-axes. A gravitational
wave of plus polarization (in the detector frame) directed
along the z-axis will induce a stretching of one arm and
a shortening of the other. This orientation provides for
maximum sensitivity. Note that the effect in the detector
is independent of whether the source direction is in the
positive z direction or negative z direction.

Alternately, consider a cross polarized gravitational
wave directed at the same detector also along the z-axis.
In this case, the end masses will be displaced equally and
comparison of arms lengths will show no relative change.
Thus such a gravitational wave is undetectable in this ori-
entation. The results are similar for gravitational waves
(of either polarization) directed either along the bisector
of the detector arms or orthogonal to this bisector. Note
in the latter case we assume a gravitational wave wave-
length that is large compared to the size of the detector.
From here on, it is assumed that the wavelength of the
gravitational waves is large compared to the size of the
detector; in the case of LIGO, this limits us to frequencies
below about 10 kHz.

The directional sensitivity of interferometric detectors
to the two polarizations, referred to as antenna patterns,
are discussed by Rakhmanov and Klimenko [37]. Con-
sider a gravitational wave with polarization components
hy(t) and hy(t) with respect to some fixed frame. The
detector’s ideal response (in the absence of noise) will be

h(t) = Fy ()ha () + Fx ()hy (£) (11)

where F, and Fy are the detector response functions
and are functions of the detector’s orientation with re-
spect to the source direction and frame, i.e. functions of
detector latitude, longitude, orientation, angle between
arms, and source right ascension, declination, gravita-
tional wave polarization, and local time. The time de-
pendence of F, and Fyx involves specifying the detector’s
location in space on the rotating Earth.

To determine the detector response as it depends on
these factors, we can take the previous solution for the
strain tensor from section 2.2 as it depends on A7f. Ne-
glecting the time dependence and separating the plus and
cross polarization components gives an expression for the
gravitational wave strain tensor of

100 010
he =hy [0 =1 0| +hy |1 0 0| =hym+hyn. (12)
000 000

This result is in the coordinate frame defined by the
source direction and polarization and must be trans-



formed to the frame defined by the detector. For inter-
ferometer detectors, a detector frame is naturally defined
by the two arms, defined as the z- and y-axes. The signal
in the detector is proportional to the difference in length
of the two arms, or proportional to

5= %Tr[mh] (13)

in terms of h, the strain tensor in the detector frame.
This is related to the strain tensor hg in the source frame
by a rotational transformation:

h = R"h.R. (14)

The rotational transformation can be described by three
Euler rotations (see figure 5). Consider the source direc-
tion to be described by 6, angle from detector zenith, and
¢, angle from detector z-arm direction to source azimuth.
The rotation R is

R =R.(¢¥)Ry(O)R-(4) (15)

describing a rotation about the detector z-axis to align
the source with the detector z-axis, a rotation about the
new y-axis to rotate the source to the detector zenith,
and a rotation about the z-axis by the polarization angle
to align the frames.

» source

°
b
x

FIG. 5: Rotations from source frame to detector frame: See
text for explanation. After Rakhmanov and Klimenko [37].

To illustrate the antenna patterns consider this in the
detector frame defined above, with source direction given
by 6 and ¢ and polarization angle by 4. In this case the
response functions are

1
F, 3 05 2¢(1 + cos? §) cos 2 — sin 2¢ cos 6 sin 21),

1
Fy 3 c0s 2¢(1 + cos? ) sin 2¢) — sin 2¢ cos 6 cos 24).

Figure 6 shows the magnitudes of these responses as a
radius vector over all possible sky positions (polarization
angle is fixed at ¢ = 0).

FIG. 6: Antenna patterns: Idealized antenna patterns for
interferometer detector, for + polarizations (left) and x po-
larizations (right).

In practice, additional rotations are needed to incor-
porate the conventional source and detector data; the re-
sultant expressions below are developed by Jaranowski,
Krélak, and Schutz [38]. Source direction is specified by
celestial coordinates: right ascension a and declination
4. Detector location is given by geographic latitude A
and longitude L, the angle between the arms is ¢, and its
orientation may be described by angle v measured from
due east counter-clockwise to the bisector of the detec-
tor arms. Polarization angle ¢ is defined in the source
frame (related to the detector frame by the previously
described rotations).

Finally, the time-dependent aspect of the detector’s
orientation must be specified as it depends on the Earth’s
rotation. This is necessary to relate the source’s sky po-
sition to the detection’s geographical location on the ro-
tating Earth; we consider this to be a fixed quantity for
a given burst. For simplicity, we may define

¢' =L+ ¢o + Qu(t — to) (16)

where (2, is the angular velocity of the Earth’s rotation,
¢o is the celestial right ascension aligned with the Green-
wich meridian at time g, and ¢ is the current time. Then
detector responses may be expressed as

Fi(t) = siné[a(t) cos2y + b(t) sin 2¢] (17)
F,.(t) sin £[b(t) cos 2¢ — a(t) sin 2¢)] (18)



a(t) = liﬁ sin 27(3 — cos 2X) (3 — cos 28) cos[2(a — ¢')]
—% cos 27y sin A\(3 — cos 26) sin[2(a — ¢')]
+% sin 2 sin 2 sin 28 cos(a — ¢')
—% cos 2y cos Asin 28 sin(a — ¢')

+% sin 2y cos® A cos? & (19)

b(t) = cos2ysinAsind cos[2(a — ¢')]

1
+Z sin 2y(3 — cos 2)) sin § sin[2(a — ¢')]
+ cos 2y cos A cos d cos(a — ¢')

1
+5 sin 2y sin 2\ cos § sin(a — ¢'). (20)

Note that sin¢ = 1 for detectors with orthogonal arms.

It was noted above that a single detector cannot iden-
tify source direction for an unknown signal. However,
the delay in arrival time among multiple detectors po-
tentially provides directional information; additionally,
it must be accounted for in comparing results from indi-
vidual detectors. Gravitational waves propagate at the
speed of light; thus, the separation of the LLO and LHO
detectors, for example, corresponds to a time delay of up
to 10 ms, depending on source direction.

E. Noise

Before addressing methods of identifying a signal, we
first examine the nature of noise in the detectors. Here we
first define noise and noise power spectral density, use this
to describe the sensitivity of the various detectors, then
detail the sources of noise in LIGO and finally comment
on the statistical nature of this noise. Statistical aspects
of noise are further discussed by van Trees [39].

Detector noise is most basically the random back-
ground of detector output, resulting from the physical
and technical constraints of the detector and environ-
mental effects (both local and non-local) that affect out-
put. In a variety of situations noise can be approximated
as Gaussian or normally distributed, where individual
samples of the series n(i) are drawn from a distribution
described by

. 1 —(n(i)—p)? /202
P(n(i):ﬂ,a’z):me (n(d)—p)/2 . (21)

The parameters u and o2 are the mean and variance of

the distribution, respectively, defined as

p o= Elz()] (22)
o* = E[(n(i) - p)?). (23)
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Noise RMS (root mean square), or standard deviation o,
is the square root of the noise variance.

Generally, the various samples n(i) are not indepen-
dent of each other but are correlated. This is described
by the covariance function

K(i,4) = Bl(n(i) — p)(n(j) — p)] (24)

where p is the mean referenced above. For a discretely
sampled time series of finite length, this information is
conveyed by the covariance matrix

Ci; = E[(n(i) — p)(n(5) — p)] (25)

which for a series with IV samples will be an N by N
matrix. If the individual samples are independent of each
other, the covariance matrix is simply

(C)ij = 08(i - j) (26)

and the noise is called white.
called colored.

Additionally, the noise is described as stationary if
these statistical properties (such as p and o?) are un-
changing in time. This includes the covariance function;
the noise is specifically covariance-stationary if the co-
variance function depends only on |i — j| and not on i or
7 individually.

In practice, detector noise is far from ideal: it is non-
Gaussian, colored, and non-stationary. Consider first the
colored nature of noise in detectors such as LIGO. This is
the consequence of the frequency-dependent sensitivity of
such a detector, which is most often expressed as power
spectral density (PSD), or variance per unit bandwidth.
This is defined as

Otherwise, the noise is

S(f) = /jo R(T)efﬂwadT (27)

where R(7) is the auto-correlation function for the detec-
tor, and T = |i — j|At is the time difference between the
samples with sampling at intervals of At. This is related
to the previously described covariance function by

K(i,j) = R(i,j) — p* = R() — pi*. (28)

Strain PSD is then frequency dependent and may be
expressed in VHz!. Figure 7 compares the PSDs for
ALLEGRO (a representative bar detector), LIGO (a rep-
resentative ground-based TFO detector), and LISA. Fig-
ure 8 shows PSDs for the various ground-based IFO de-
tectors discussed previously, along with LIGO II. LIGO
IT, or Advanced LIGO, is a planned upgrade of LIGO
and is discussed below.

In the case of the LIGO detectors, the design sensitiv-
ity for first generation LIGO is at best h(f) = 10722 per
root Hz. Given the 4 km arm length this corresponds to
a relative displacement of the test masses of order 1017
m.
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FIG. 7: Detector power spectral densities: LISA, LIGO, AL-
LEGRO: After Sathyaprakash and Winkler [40] and Hamilton
et al. [41].
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FIG. 8: Detector power spectral densities, ground-based

IFOs: After Sathyaprakash and Winkler [40] and Torres [42].

The LIGO PSD is depicted in figure 9. From sev-
eral hundred Hz and above, increasing with higher fre-
quency, LIGO sensitivity is limited by photon shot noise,
or the quantization of the laser beam into individual pho-
tons which introduces uncertainty into intensity measure-
ments by the photodetector. High laser power, including
the results of beam recycling plus the Fabry-Perot cav-
ity assembly, serves to reduce the ratio of this noise to
total measured power. The floor at maximum sensitivity
around 300 Hz includes the effects of thermal vibrations
of atoms in the test masses and in the suspension sys-
tem. In the neighborhood of 50 Hz, sensitivity rapidly
diminishes due to seismic noise. In the current genera-
tion LIGO, this represents low frequency vibrations from
both natural and anthropogenic sources.

Future upgrades to LIGO are planned, referred to as
LIGO II. The planned sensitivity will be improved over
that of LIGO I by a factor of 10 or more (depending
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FIG. 9: LIGO sensitivity and noise sources: After Hughes et
al. [43].

on frequency) and the “seismic wall” or low-frequency
cutoff will be pushed back to around 20 Hz. LIGO II
system improvements will improve sensitivity by address-
ing all of these noise sources; this includes superior seis-
mic isolation, higher laser power, improved optics, and
more massive test masses. An additional noise source
which may then become an issue at low frequencies is
gravity gradient noise. Seismic waves traveling past the
detector test masses displace the ground mass. In par-
ticular Rayleigh waves displace the surface in a rolling
motion (combined transverse and longitudinal motion).
This produces a time-varying change in the Newtonian
gravitational forces from the ground on the test masses.
Since the effect is conveyed to the test masses gravita-
tionally and not acoustically, seismic isolation does not
address this phenomenon. If it proves to be an issue, ar-
rayed seismometers may allow subtraction of this effect
(Johnston [44]). Noise from residual gas molecules in the
detector arms and radiation pressure are also potential
noise issues for LIGO II.

Narrow band higher noise sources include electrical
noise, including spikes at multiples of 60 Hz associated
with noise from the electric power supply, and resonances
in the suspension system.

The colored nature of detector noise can be addressed
for many applications by data whitening. Addition-
ally, detector noise is in practice non-Gaussian and non-
stationary. In particular, bursts of noise with higher
than average variance are common. LIGO concurrently
records data from environmental sensors to help isolate
affected data segments. Still, data analysis must consider
the non-ideal nature of the noise.



F. Data analysis

Data analysis efforts for LIGO are organized into sepa-
rate groups, each addressing a different type of signal: In-
spirals, Periodic (Pulsar), Burst, and Stochastic Sources.
This reflects the different statistical and analytic strate-
gies involved for these differing target signals.

The Periodic sources subgroup is looking for periodic
signals (relatively) unchanging in time in terms of fre-
quency; pulsar phenomena are leading potential sources.
The Inspiral sources subgroup seeks to detect the chirp
of frequency changing in the last moments before binary
neutron stars or black holes plunge together, along with
the merger phenomena. The Stochastic sources subgroup
is concerned with a random background of signal. The
long-term nature of periodic and stochastic signals allows
these analyses to integrate signals over long time periods.

The Burst sources subgroup seeks any short burst of
gravitational waves. In a single detector this would in
general be indistinguishable from non-stationary noise in
that detector. This necessitates comparison (correlation)
of results from two or more detectors.

The current burst analysis pipeline is described in LSC
[45]. Data segments where all three detectors were op-
erating in science mode are identified. For each LIGO
interferometer, the output data stream is validated and
filtered. This prepared data is then subjected to two
parallel algorithms to identify event triggers. For the
same time segments, data from auxiliary interferometer
channels is used to identify anomalous environmental or
detector events which could be misinterpreted as bursts.
Events identified here are used to veto any corresponding
event triggers. The surviving set of single IFO event trig-
gers is then compared to the sets from the other three de-
tectors. Events must be coincident in multiple detectors,
with coincidence defined in terms of time, clustering, and
frequency cuts. This produces a smaller set of event can-
didates. To evaluate the frequency of false alarms, checks
include offsetting the different IFO event triggers in time
to test for background “burst” rates. Hardware and soft-
ware injections are also applied to each interferometer at
the front end of the analysis pipeline for testing.

G. Triggered burst analysis

Burst searches based on independent triggers are a spe-
cial type of burst search to which this project most re-
lates, so we examine it in some detail. The Triggered
Burst subgroup is concerned with possible gravitational
wave bursts associated with independent observations of
transient astrophysical phenomena, notably GRBs. Such
searches have some advantages over untriggered searches.
The sensitivity is greater because the ability to target a
specific time segment reduces false alarms, plus the in-
dependently observed trigger may suggest a particular
waveform for the particular signal. Data analysis for such
searches is significantly different than many searches in
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that the source location is (generally) known from the in-
dependent trigger. As a result, both the time delay and
the direction-dependence of individual detector response
functions can be factored out.

Currently, GRBs are used as triggers for such searches
because of their frequency of detection (about 1 per day)
and because current models suggest a small delay be-
tween the trigger signal and the gravitational wave sig-
nal. Specifically, collapsar models suggest that the GRB
will lag about 100 seconds or less behind the gravita-
tional wave emission (this delay represents the time for
the jets to reach surrounding gas and produce gamma,
ray emissions).

The analysis pipeline is described by Mohanty et al.
[46] and may be summarized as follows. GRB trigger in-
formation is obtained from the GCN. Since this includes
source sky location, the corresponding time for each de-
tector involved may be determined. Note that while the
detection of a GRB is reported within seconds, accurate
sky location information may take a few hours or more to
become available. Corrections include propagation time
between detectors and between the detecting spacecraft
and the detectors, as well as timing corrections particular
to detectors. Comparison of source direction to detector
antenna patterns allows a quality factor to be assigned
based on the potential detectability of a given signal.

For each trigger, on-source data segments are identi-
fied from each detector, with adjustments for propagation
time delay. These segments cover a range in time before
and after the trigger since most models suggest a time
delay between the GRB and production of gravitational
waves. Remaining data segments form the off-source data
set.

Data conditioning precedes application of search algo-
rithms and includes line removal, or filtering to eliminate
narrow bands of high noise (from sources such as elec-
trical system noise). Bandpass filtering eliminates noise
at lower frequencies where seismic noise dominates and
at higher frequencies where system noise increases (and
fewer gravitational wave signals are expected). The data
is also whitened to simplify subsequent analysis.

Mohanty et al. [46] develop a statistical indicator com-
parable to the cross-correlation of limited length time se-
ries between two detectors, but normalized with off-signal
data. This indicator has free parameters corresponding
to start time, relative shift between the two detectors,
and the length of the time series. These three parameters
define a three-dimensional S-volume, and several differ-
ent methods are used to collapse this to two-dimensional
maps dependent on start time and time series length.

The real-time notice of GRBs via the GCN is not crit-
ical to gravitational wave observations, since detector
data is stored, but could have applications. In particu-
lar, notification of detector operators can permit requests
that detector lock status be maintained or extended.



H. Hypotheses testing

The search for gravitational waves using detectors such
as LIGO involves signals which are of small amplitude
compared to the noise RMS. Statistical tests are a nec-
essary means of detecting a signal.

Consider two detectors with uncorrelated noise nq(t)
and ns(t) for detectors j = 1,2. In general the gravita-
tional wave signal will be different in the two detectors;
this will be h1(t) and h2(t) in the respective detectors.
These signals will differ due to the (generally) different
antenna patterns for the detectors as well as the relative
time shift due to difference in signal arrival time at the
two detectors. The observed signals in the two detectors
may be written

z1(t) = ha(t) +nu(2) (29)
x2(t) = ha(t) + na(t). (30)

Initially we will consider the case of a pair of identical,
co-located, co-aligned detectors. In this case hi(t) =
ha(t) = h(t).

By making a comparison of the two signals, the ef-
fects of individual uncorrelated noise may be minimized,
increasing the potential of detecting a signal. One statis-
tical test for such a comparison is the cross-correlation,
defined (for two detectors) as

N
Acc =<7,T3 >= Z x1(m)z2(m) (31)

m=1

for a discretely sampled time series with N samples.
Acc is the test statistic, which is the quantitative re-
sult of the test. Figure 10 gives a schematic illustration
of cross-correlation. The signal (top series) is observed
by two detectors amidst uncorrelated noise (middle fig-
ures), making direct identification of the signal difficult.
A cross-correlation of the two detector series for various
time offsets, however, shows a noticably higher result for
A near zero time offset (bottom figure). The value of
A will tend toward zero if no correlated signal is present
(assuming uncorrelated noise of zero mean), but will have
positive values for correlated signals, increasing in magni-
tude with stronger signals. In this sense, such statistical
methods serve to increase detector sensitivity.

Another test is the matched filter. A known or postu-
lated signal waveform is here correlated with a detector
signal; a high statistic value results if the detector signal
contains a signal corresponding to the filter.

For the matched filter test, signal-to-noise ratio (SNR)
may be defined as follows in the case of Gaussian station-
ary noise with mutually independent samples:

N 2/ 7
(SN By = D20 _ <R
> iy M2 (1) o

for a known signal h(7), detector signal z(7), and noise
n(i) having variance o2 and zero mean .

(32)

Agc=<5,,5,>

FIG. 10: Illustration of cross-correlation: See text for expla-
nation.

The performance of different tests can be compared
using the receiver operating characteristic (ROC) curve,
which is the relation of the probabilities (P):

P{A > k given a signal is present } vs.
P{A > k given no signal }

for a specified threshold k, where A is the test statistic.

A further test is based on the likelihood ratio. The
generalized likelihood ratio test is an optimized statisti-
cal test in the frequentist sense. Details are discussed by
van Trees [39]. Consider data X with a probability distri-
bution P(Z|a) as a function of parameters @ drawn from
parameter space A. In the case here, A would be the set
of all possible signals with each @ describing a particular
signal; we may indicate the parameters corresponding to
the absence of any signal by Ag. Suppose we have a pair
of hypotheses

Hy:ae Agvs. Hi:a ¢ Ay (33)

which here would be that no signal is present Hy vs. that
a signal is present H;. The likelihood ratio is defined as

P@[a):a ¢ Ao

A= — —F— —F—.
P(Zla):a € Ay

(34)

This ratio gives small values in the case of the second
hypothesis H;. Maximizing the statistic A(z) with re-
spect to @ favors the first hypothesis Hy. This is then a
generalized means of hypothesis testing.

Applying this to the case of two detectors considered
here, if the maximized likelihood ratio test statistic for
two detectors is generalized to unknown signal h:

pp P (T1,%2|h)
A(zZ|h) = —_ 35
(@lh) mﬂax Py (T1,Ta) (35)



which may be maximized by maximizing In(A), and

N N N
In(A) = Z z1(m)h(m) + Z x2(m)h(m) — Z h%(m).

m=
(36)
Note that the noise is assumed Gaussian and white. This
result is maximized if

(:cl (m)h(m) + z2(m)h(m) — h2(m)> =0
(37)

—_

WE

Oh(n)

m=1

which yields

x1(m) + z2(m)
2

Substituting this result for h(m) above gives a maxi-
mized statistic

() = (7, B (39)

which can be compared to a specified threshold k. For
details of this derivation see appendix C.

This analysis involves a variety of simplifications. For
example, we assume above that the detectors are phys-
ically identical and noise is stationary and white. In
seeking a burst signal based on a trigger, a relatively
short time segment is searched and thus the noise may
be relatively stationary. Non-stationarity may be more of
an issue in comparing the on-source sample to off-source
samples (when checking for false alarm rate).

Additionally, only the LLO and LHO-4k detectors are
physically identical, and the PSDs of the various detec-
tors differ somewhat—even LLO and LHO differ slightly
in PSD due to their different noise environments. The
consequence is that the covariance matrix for a specified
detector pair must be incorporated into calculations of
cross-correlation:

h(m) = (38)

In(A) =7, C'z} (40)

Auto-correlation terms are similarly affected by the col-
ored nature of the noise.

However, for an analysis confined to the IFO detectors,
a first approximation may be made without considering
these issues. Note that the LIGO, VIRGO, and TAMA
detectors have approximately similar PSD except for a
scale factor. This is a consequence of the generally sim-
ilar construction of these detectors, introducing similar
engineering and environmental constraints. The analy-
sis below will consider such representation of the PSD
differences.

IV. LIKELIHOOD RATIO TEST FOR BURST
SIGNAL DETECTION

A. Introduction

The goal of this research was to identify optimal tests
in a network of detectors for a signal associated with an
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external trigger. The first objective (discussed in this
chapter) was to compare several statistical tests for a
pair of identical co-located co-aligned detectors. Selected
tests included the cross-correlation test, the likelihood ra-
tio test, and the sum of the individual variances. This
would be done analytically (for ideal noise) and by sim-
ulation (for ideal noise and a realistic noise model). For
non-Gaussian noise, the cross-correlation test proved su-
perior to the likelihood ratio test. This would motivate
the method of the next stage (discussed in chapter 5),
which would be development of the optimal test. There,
the likelihood ratio method was used to develop opti-
mal weightings of the various cross-correlation and auto-
correlation terms within a network; then, applying the
previous findings regarding cross-correlation, only those
terms would be retained to form an optimal statistic.

B. Analytical derivation

The issue is to identify an optimal statistic for multi-
detector correlations. Initially, the standard cross-
correlation and likelihood ratio tests were compared. At
this stage identical co-located co-aligned detectors were
considered, simplifying the likelihood ratio test to the in-
ner product of the average of the detector signals (as in
the derivation in section 3.8). As an additional compari-
son, the sum of the individual auto-correlations (sum of
variances for each detector) was also considered. Note
that the likelihood ratio statistic is a linear combination
of the cross-correlation term and the sum of variances
(for the case considered here).

Recall that for a pair of identical detectors co-located
and co-aligned, the signal in detector ¢ = 1,2 is described
as

si(m) = n;(m) + h(m) (41)

for the mth sample of N total samples, where n;(m) is
the noise in detector ¢ and h(m) is the signal (same for
both detectors in this initial case). In the absence of any
signal, x;(m) = n;(m). Noise is assumed to be Gaussian
and uncorrelated, with mean yu = 0 and variance o2 = 1.

First, the ROC curves were constructed by analytical
treatment of these test statistics, assuming a white sta-
tionary Gaussian noise distribution. Given an arbitrary
but deterministic signal and this simple noise distribu-
tion, the probability distribution of the statistic with or
without a signal can be obtained. In either case each
statistic has a Gaussian distribution by the central limit
theorem as the number of time series samples approaches
infinity. A summary of the analysis follows:

The cross-correlation statistic is defined as:

AC’C =<71,T2 > . (42)

In terms of n;(m) and h(m) this becomes, for the cases



without and with signal, respectively:

N
Acc = Z ni(m)nz(m) (43)
and
N
ce = 3 [mmma(m) + ma(m)a(m)
m=1
+na(m)h(m) + h? (m)] . (44)
Note that the term
N
Z y=C (45)

is a constant for a specified signal.
The likelihood ratio test statistic in this case is:

A [TiAT T T
LR — 2 ) 2

1 1 1
Z <ZT1,T1 > +Z < To, T2 > +5 <T1,T2 > .

With no signal present, this is
1 Y 1
i § : 2 _ § :
ALR = 1 _1n 4 .

and with signal present is

1 & 1 & 1
N = 53 ndm)+ 23 ndm) 4 1 30 mi(mima(m)
+ Z ny(m)h(m) + Z na(m)h(m) + C (47)

where C' was defined in equation 4.5.
The final test used was the sum of the variances (or
auto-correlations):

Avs =<T1,%1 > + < T2, T2 > . (48)
With no signal present, this is
N N
Avs= Y md(m)+ > ndm)  (49)
m=1 m=1

and with signal present is

N N
vs = D_ni(m)+ Y nj(m)
m=1 m=1

N

test signal absent |signal present
cross-correlation |u = p=0C
o’ = o?=N+20
likelihood ratio [p=iN b= iIN+C
o’ = iN o’ = 1N +2C
variance sum p=2N p = 2N +2C
o’ =4N o’ =4N +8C
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TABLE I: Analytic mean and variance for tests examined

The full derivations are included in appendix D, and
the analytic results are summarized in table 4.1. Again,
in each case the statistics have a Gaussian distribution
described by the tabulated parameters, as the number of
samples N becomes sufficiently large.

Using these results construction of the ROC curves is
straightforward. The ROC curve is detection probabil-
ity versus false alarm probability, or probability that the
statistic exceeds a threshold in the presence of a signal
versus the probability that the statistic exceeds the same
threshold in the absence of a signal.

Since the statistics in this case (ideal noise) have a
Gaussian distribution, the ROC curves are obtained as
follows. Given a detection threshold z, the probability
that a given statistic A is less than the threshold, i.e. the
probability that A < z, is

1 T — W
Dw:—l—}—erf( )]

@ =3 L
The probability of a positive test result (a detection if

a signal is present, or a false alarm if no signal is present)
is then

(50)

Pla) =1 1erf[“’" _"‘]

5 3 57 (51)

in terms of the parameters derived previously.

To obtain the desired function, detection probability
as a function of false alarm probability, we can solve the
above equation to find the threshold that gives a speci-
fied false alarm probability, then substitute that thresh-
old value to determine the corresponding detection prob-
ability. The above equation solved for threshold value
is

x = p+ V20?2 erfinv [1 - 2P(:1:)] . (52)

For all three statistics, the fact that the noise is sta-

tionary with zero mean leads to the result

N
Z ni(m)h(m)

Thus each statistic is a sum of terms, each term either a
product of the noise variance and number of samples, or
the previously defined C. Since C' is proportional to the

=0. (53)



signal-to-noise ratio, the statistics are uniformly indepen-
dent of the shape of the signal apart from a dependence
on the signal-to-noise ratio. This is of course only true
for this ideal (Gaussian) noise case.

To illustrate these analytic results, several resulting
ROC curves are plotted in figure 11. This plot shows
detector performance for three different values of SNR.
Note that the variance sum test results are identical to
the cross-correlation test results for these analytic results
with Gaussian noise. In the context of our initial searches
for gravitational waves, it is most desirable to minimize
the false alarm probability. Given this restriction, the
figure illustrates that for lower SNR values the conse-
quence will be a low detection probability. Figure 12
shows the detection probability versus SNR for various
fixed false alarm probabilities. For the false alarm prob-
abilities depicted, a detection probability of at least 50
percent requires an SNR of at least 4 to 10.

Signal G 0.25 S 0: LR test (blue), CC test (red), variance sum (red)
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FIG. 11: Analytic ROC curve, Gaussian noise

C. Simulation, Gaussian noise

In parallel, a Monte Carlo simulation was used and its
results compared to the analytic results discussed above.
The simulation code was written in Matlab and is in-
cluded as appendix I. Several simple burst signals were
considered of two forms: a Gaussian signal or a sine-
Gaussian, with varying duration, amplitude, and (in the
latter case) modulation frequency. For individual trials,
signals were generated by producing a vector of 1024 time
samples, with noise produced as a Gaussian distribution
and, in the signal present case, added to the generated
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Detection probability vs. SNR for specified false alarm probability
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FIG. 12: Analytic detection probability vs. SNR for fixed
false alarm probabilities, Gaussian noise

signal. Noise was independently generated for the signal
present and signal absent cases. The three statistics were
then calculated for each of the two cases from the defini-
tions given previously. Statistic values were stored for a
number of trials (typically 102 to 10*), with probabilities
of a statistic exceeding a specified threshold calculated
from counts of these statistic values.

Simulation results were consistent with the analytic
results, affirming the simulation code. The likelihood
ratio test consistently outperformed the other tests, both
with high SNR and low SNR. The results indicate that
for the case of ideal Gaussian noise the likelihood ratio
test is superior to the cross-correlation test, and that the
relative performance of these tests is independent of the
form of the signal beyond dependence on the SNR.

Figure 13 shows the ROC curve for a sine-Gaussian sig-
nal for a 10*-trial simulation with SNR=2 and SNR=7.
Figure 14 shows the ROC curve for a Gaussian signal
with the same SNR values, but plotted with a semilog
axis to emphasize performance at low false alarm proba-
bilities. Since low false alarm probability is a priority for
gravitational wave searches, performance in this regime
is of particular interest.

D. Simulation, realistic noise

Next, the simulations were repeated with a more real-
istic noise model. The model used was a mixed Gaussian
noise model, in which a random small fraction a of the
time samples have noise drawn from a Gaussian distri-
bution with standard deviation (or noise RMS) larger by
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FIG. 13: ROC curve for sine-Gaussian signal, Gaussian noise:
Comparison of analytic results (dashed lines) and Monte
Carlo results (solid lines).
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FIG. 14: ROC curve for Gaussian signal, semilog, Gaussian
noise: Comparison of analytic and Monte Carlo results.

a factor k:

2, o1 < 09 (54)
The ratio of the variances then is k? = 03 /0?. This model
is moderately realistic in that interferometer noise tends
to include occasional bursts of higher-variance samples.
These simulations found that for sufficiently low SNR,
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the cross-correlation test outperformed the other tests.
The reason for this is that the non-Gaussian noise ele-
ment significantly increases the auto-correlations (or vari-
ances) of individual detectors, eliminating the usefulness
of this term in the likelihood ratio statistic. Plots illus-
trating conditions of best tests from simulations are in
figures 15 and 16, with different signals (sine-Gaussian
and Gaussian signals, respectively).

Signal G 0.05 S 50, Noise 0.5% at 6 x 2
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FIG. 15: ROC curve for signal, mixed Gaussian noise: Com-
parison of tests from Monte Carlo simulations (10* trials), for
a mixed Gaussian noise distribution (random 0.005 of samples
with variance times 2). Signal is sine-Gaussian.

Figure 17 shows simulation results on a semilog plot
to highlight performance at low false alarm probabili-
ties. The plot includes results for a fixed SNR and fixed
fraction of high variance noise, but the noise RMS ratio
k varies. This illustrates clearly that there is relatively
little change in the performance of the cross-correlation
test as the nature of the noise changes, while the like-
lihood ratio test performance deteriorates more rapidly
with increasing high noise component. For these condi-
tions (SNR = 5, fraction of high noise a = 1072), the
two tests have comparable performance for k = 4, with
the cross-correlation test proving superior as k increases.

Applied to mixed Gaussian noise, the Monte Carlo sim-
ulations show that at low SNR the cross-correlation test
is superior in performance, even if the high noise samples
comprise less than one percent of the time series. Fig-
ure 18 shows which test performs best, cross-correlation
(red) or likelihood ratio (blue), for various values of f
(fraction of high noise samples) and SNR. Each point in-
dicates which test performed best in a 10%*-trial Monte
Carlo simulation using the specified parameters (varying
f and SNR). Note that the left edge of the plot corre-
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FIG. 16: ROC curve for signal, mixed Gaussian noise: Com-
parison of tests from Monte Carlo simulations (10® trials), for
a mixed Gaussian noise distribution (random 0.005 of samples
with variance times 2). Signal is Gaussian.
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FIG. 17: ROC curve for signal, mixed Gaussian noise: Com-
parison of tests from Monte Carlo simulations (10* trials), for
a mixed Gaussian noise distribution (random 0.001 of samples
with k = 2, 4, or 10). Signal is Gaussian, SNR=5.

sponds to uniform Gaussian noise (o2/01 = 1), and the
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bottom edge of the plot corresponds to negligible pres-
ence of high variance noise.

As the probability of any high variance noise samples
drops, the likelihood ratio test performs best: for a <
3 x 10~*, the simulations tend to have few if any high
noise samples. Since the number of time samples N =
1024, many of the trials for such values of a have no high
noise samples. This leaves the series as uniform Gaussian
noise (or nearly so), a case in which the likelihood ratio
test consistently performs best. On the other hand, once
high noise samples begin to appear even in very small
numbers, the cross-correlation test becomes superior. For
a = 1073, the cross-correlation test is best for noise RMS
ratios k of 3-4 or greater; for « = 1072, it is best for
values of k greater than about 2.

best test, ~SNR=5, P(det)=0.9
10 ‘ :

alpha (fraction high noise)

10 10’ 10° 10
ratio of high noise rms to low noise rms

FIG. 18: Best test, Monte Carlo results: Best test from Monte
Carlo results (10* trials each), for cross-correlation (red) or
likelihood ratio (blue).

Thus even these slight departures from ideal uniform
Gaussian noise are sufficient to cause the traditional
likelihood ratio test to perform worse than the cross-
correlation test. As noted previously, this is because the
likelihood ratio statistic is highly dependent on the char-
acter of the noise, and this is due to the effect on the
auto-correlation terms contributions as this type of noise
is encountered. This motivates the steps to follow in
identifying a more generally ideal test statistic.

V. GENERAL NETWORKS OF DETECTORS

A. Introduction

In the previous section it was demonstrated that the
cross-correlation test performs better than the likelihood
ratio test for low SNR and non-Gaussian noise. This is



now used in constructing an optimal statistic for detector
networks. The likelihood ratio method is used to obtain
a test statistic, then only the cross-correlation terms are
retained with the derived weightings. This is done for the
two detector case, then for larger networks of detectors.

B. Likelihood ratio statistic for two detectors

First the likelihood ratio method was used to construct
the optimal test statistic for a pair of detectors physically
identical but neither co-located nor co-aligned. Thus the
signal in each detector is a function of the signal’s two
polarization components (identical for physically identi-
cal detectors) and the given detector’s response function.
Using this method we construct the signal components
as a function of detector signals and response functions.
The full derivation is in appendix E. Noise is assumed
white and uncorrelated between the detectors, but no
assumptions regarding the signal are made. The signal
in detector j = 1,2 is then

zj(m) =n;j(m) + Fyjhi(m) + Fxjhx(m) (55)

in terms of the detector response functions F} ;, F; and
the signal polarization components. The response func-
tions are time dependent since the detector antenna pat-
terns change relative to the source as the Earth rotates.
However, we assume here in the context of burst signals
that the burst is of sufficiently short duration to ignore
this time dependence.
The likelihood ratio statistic for two detectors is

= Py (T1,%2|h)
A(Z|h) = —_ = 56
(@lh) mﬁax Py (T1,T2) (56)

and following the procedure previously described and de-
tailed in appendix E the result for the likelihood ratio
statistic for two detectors is

M, 1,
In(A) =>" 5T+ 575 (57)

i=1

There are two points to note regarding this result.
First, this result is not valid for a pair of co-located, co-
aligned detectors since the derivation produces an unde-
fined result (due to division by zero) in such a case. This
is not surprising, since such a detector pair will have iden-
tical signals and hence yield only one independent mea-
surement of the signal. Thus it cannot produce a solution
for the two polarization components of the gravitational
wave signal.

Second, this optimal statistic is merely the sum of
the individual auto-correlation terms with no contribu-
tion from the cross-correlation. This is counter-intuitive,
since this holds even for nearly co-located co-aligned
detectors. In such a case, the cross-correlation term
should be significant. But with the above result, even

19

for a detector pair infinitesimally misaligned, no cross-
correlation term remains. This occurs because the signal
components are completely unconstrained by this purely
mathematical approach. As a result, the optimization
method obtains a solution where individual detector sig-
nals may bear no relation to the nature of the solution
for source signal. In other words, the method used pro-
duces a mathematically optimal solution without regard
to its physical plausibility, since the entire possible signal
space is treated as equally likely.

To address this issue, one possible approach would be
to introduce an additional constraint in the solution, such
as that the polarization components of the signal be of
the same order of magnitude as the signals in the detec-
tors. Such a constraint is ad hoc, but it may be possible
to identify a constraint which is physically required (as
opposed to merely most likely). For example, the detec-
tor response functions F j, F; are each constrained to
values between -1 and 1.

C. Likelihood ratio statistic for multiple detectors

The derivation of test statistic was expanded to three
detectors to see if the cross-correlation terms would be
present in this case. The likelihood ratio optimal statistic
for three detectors, which is

= Pl(fl,f2,53|ﬁ)
A(Z|h) = max ——2—>~ 58
(@) e Po(T1,T2,73) (58)

is fully derived in appendix F. The final result may be
written as

N
2 2 2
IH(A) = E |:K'11331,i + K225 ; + K33T3;

=1

+K12%1,5T2,; + K13T1,i 3,5 + 523332,1'333,1'](59)

where
K11 = %(ffz*’ffs)a (60)
Kog = %<f122+f223)7 (61)
K33 = %(f123+f223>5 (62)
K2 = %f13f23, (63)
K1z = —%fmfzs; and (64)
Koz = %f12f13 (65)

using the definitions
foa = FipFxq— FigFxp and (66)
B = fa+ fis+ f3s (67)



Note that Kpp > 0, that K11 + Koo + K3z =1, and that
Kpg for p not equal to ¢ may be either positive, negative,
or zero. Negative values of the cross-correlation term co-
efficients describe anti-correlation between the two detec-
tors’ signals. The absolute magnitude of the coefficient
may be used to identify the relative contribution of a
given term to the final statistic.

Consider the above result for the case of three detectors
of which two (j = 1,2) are co-incident and co-aligned.
This is somewhat analogous to the three LIGO detectors,
ignoring (for now) the different sensitivity of the LHO-2k
detector. In this case fi2 = 0, giving these values for the
coeflicients:

1 1
K11 = K22 = 7, Kss = K12 = o, and K13 = ka3 = 0.
(68)
In this case, the cross-correlation term for the co-
aligned co-located detectors remains, but the other cross-
correlation terms do not.

As mentioned in section 3.8, if the detectors have sim-
ilarly shaped PSD curves in the most sensitive region
apart from a relative scaling of the noise (this is true for
similar detectors, such as LIGO, VIRGO, and TAMA),
we may modify the above treatment. For each detector,
suppose we express the signal Z; by normalizing with
respect to the noise. Then Z; may be expressed

zj(m) = n;(m) + gjh;(m) (69)
where g; is (assumed) a constant scale factor. In the
derivation of the likelihood ratio statistic we may simply
replace F; with g;Fy; and Fy; with g;Fyx;. The result
is

foa = gpgq(F+pF><q - F+qF><p) (70)

and the previous expressions for § and kp, are un-
changed.

To apply this result, consider the three LIGO detectors
as discussed above, but now more realistically. Let i =
1,2, 3 refer to the LHO-4k, LHO-2k, and LLO detectors,
respectively. If g4 = 1, then go = 0.5 and g3 = 1. As
before, fio = 0, but now fas = 1 fi3, giving these values
for the coefficients:

1
= — = = — 1
K11 5 K12, K22 10’ (7 )

K33 = %, and
In this case, the auto-correlation contribution of the
LHO-4k detector is unsurprisingly four times that of the
LHO-2k detector. Cross-correlation terms between ei-
ther LHO detector and the LLO detector. Just as in the
previous two detector case, here only two of the three
detectors provide independent data.
The result is expanded to n detectors in appendix F.
In this case the result is

K13 = K23 = 0. (72)

n

Z[Z"H xj; +

i=1 “j=1

n j—1

ijmj,iwk,z'] (73)
j=1k=1
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where

k#J
Kjk = ,3 Z Finfrp; (75)
pF#ik
n j—1
B=>>fh  and (76)
=1 k=1
foa = FipFxq = FiqFxp. (77)

In the case of four detectors there are 4 auto-
correlation terms and 6 cross-correlation terms. If (only)
two detectors are co-located and co-aligned, all the terms
remain non-zero.

Again, to a first approximation we may consider the
various IFO detectors to have similar PSDs after adjust-
ment by a scale factor g; for each detector. The vari-
ous values of g; could be estimated by integrating the
PSD curves over the frequency range of interest. Here,
as a first approximation, values of g; were simply esti-
mated by comparing approximate design sensitivity at a
frequency selected (200 Hz) near maximum sensitivity.
Defining the factors in terms of LLO with g; = 1, this
gives approximate values of 1 for LHO-4k, 0.5 for LHO-
2k, 0.75 for VIRGO, 0.5 for GEO, and 0.17 for TAMA.

D. Dependence on polarization angle

It should be noted that the above derivations have as-
sumed known and fixed values of 1, the gravitational
wave polarization angle. Tests suggest that the effect
of changes to the polarization angle is minimal. This
is as expected: the gravitational waveforms h, and hy
represent a breakdown of the gravitational wave signal
with respect to a designated frame, this frame character-
ized by choice of polarization angle 1) (Giirsel and Tinto
[47]). The gravitational waveforms are thus dependent
on the choice of polarization angle. For arbitrary burst
waveforms, polarization angle is not a particularly useful
quantity and may be absorbed in the waveform solutions.
For certain waveforms, such as signals from binary neu-
tron stars or black holes, the polarization angle is usefully
related to source properties (such as orientation of the
binary orbit). The following discussion is thus more ap-
plicable to such cases of waveforms well related to source
characteristics.

In principle it should be possible to obtain the likeli-
hood ratio statistic including 9 as a variable over which
to maximize, given that we have at least three indepen-
dent detectors. This would not be possible with two de-
tectors.

Consider the likelihood ratio statistic derivation, but
retaining the dependence on polarization angle, which



may be separated within the response functions as:

Fi; = Qjcos2y + R;sin2¢ (78)
Fy; = Rjcos2y —Q;sin2y. (79)

The results are detailed in appendix G. Whereas in pre-
vious cases we obtained a set of coupled linear equations,
here we obtain non-linear equations involving the signal
samples hi;, hx; and the polarization angle v;, which
in general for an unknown burst wave form could vary
with time. However, the substitutions X; = cos2v; and
Y; = sin 2¢); reduce the equations to a set of quadratic
equations. If 9 is assumed constant in time, the equa-
tions become

0 = X +7Y —a1 X?hyi —aY?hyi — 200 XY hy;
+(a1 — a2) XY hyi — by (X2 — Y?)h; (80)

o
I

VX + MY — a2 X?hyi — a1Y ?hyi — 201 XY hy;
+(a1 —a2)XYhy;— by (X2 - Y2)h+z' (81)

0 = —nYhyi+72Xhyi —2Yhe — 1 Xhy
+(hh = h)l(a1 — a2) XY + by (X - Y?)]
+hyihyil(ar —az)(X? —Y?) +4b, XY]  (82)

0=X?+Y?-1 (83)

where

d d
a=30 w=RE =30,
j=1 j=1

d d
Y1 = ZQ]'.Z'J",', and Y2 = Zijj’i' (84)
j=1 j=1

For a polarization angle varying over time, X and Y
would become X; and Y;.

E. Mapping weightings

Concentrating on the cross-correlation terms for the
multi-detector network results, these results can be used
to generate sky maps comparing the contributions of
specified terms to the test statistic. A code was written
in Matlab to accomplish this and is included in appendix
J. For detector networks of four detectors selected from
a list of seven IFOs (LLO, LHO-4k, LHO-2k, VIRGO,
GEO, TAMA, AIGO), it produces a sky map indicating
which cross-correlation term has the greatest magnitude.
The code stores values of all coefficients (including auto-
correlation terms) and can handle detector networks of
three to seven detectors (with adjustments to color map-
ping and plot legends).
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A sample map produced with this code is shown as
the top map of figure 19. Note that if the two LHO
detectors are used, this cross-correlation term has the
largest magnitude coefficient for most source directions.
This map (as well as those in appendix H) incorporates
the adjustments for varying detector sensitivity previ-
ously described. The bottom map in figure 19 shows the
same four detector network but without this adjustment.
Note that in the adjusted map, the LLO/LHO/VIRGO
cross-correlations have the greatest weightings over much
larger sky areas, reflecting their greater potential sensi-
tivity compared to correlations with less sensitive detec-
tors. However, there remain sky directions where cor-
relations with the less sensitive detectors contribute the
most. The sky maps in appendix H, which cover all possi-
ble 4-detector correlations involving the LIGO detectors,
VIRGO, GEO, and TAMA, identify several cases where
such correlations are important over large areas of the
sky.

red=LLO LHC4k, vellow=LLO VIRGO, grecn=LLO TAMA

Q 50 100 180 200 250 300 350
cyan=LHO4k VIRGQ, bluc=LHCdk TAMA, magenta=VIRGO TAMA

red=LLO LHOdk, yellow=LLO VIRGO, grocn=LLO TAMA

a 80 100 150 200 Z50 300 380
cyan=LHO4k VIRGQ, bluc-LHGCak TAMA, magenta=VIRGO TAMA

FIG. 19: Highest weight cross-correlation term: For
LLO/LHO/GEO/VIRGO correlation, the cross-correlation
term with the greatest magnitude coefficient from the derived
statistic. The top map is adjusted for detector sensitivities as
discussed in the text; the bottom map is not, effectively as-
suming identical detectors.

Note that these maps simply identify the cross-
correlation term that contributes the most to the like-
lihood ratio statistic. This term may or may not be sig-
nificantly greater than the next greatest term, and the



cross-correlation terms for some sky directions in some
cases may collectively contribute much less than the auto-
correlation terms. To illustrate, figure 20 depicts the
magnitude of each cross-correlation term over all sky di-
rections. For this four-detector correlation, the two LHO
detectors are included.

cross correlation, LLO-LHO cross correlation, LLO-LHO

cross correlation, LHO-LHO
50
i _ ’ s -
-50

0 100 200 300 0 100 200 300
cross correlation, LHO-VIRGO cross correlation, LHO-VIRGO

FIG. 20: Illustrative maps of weightings for individual cross-
correlation terms: Sky maps of magnitude of cross-correlation
term coefficients for a network including LLO, LHO-4k, LHO-
2k, and VIRGO. Color indicates magnitude, ranging from 0
(blue) to 1 (red).

To further illustrate the variation of these coefficients,
figure 21 depicts the values of each coefficient in a three-
detector network for a fixed value of declination. Recall
that the right ascension in the sky maps must be ad-
justed for local solar time; in other words, without speci-
fying local time with respect to the source, we can specify
the source’s declination but not its east-west sky loca-
tion relative to the detector. Figure 21 thus illustrates
weightings for a fixed sky position, with the rotational
position of the Earth accounting for the horizontal axis.
The auto-correlation terms are all positive, whereas the
cross-correlation terms may be positive or negative, since
for some configurations and source directions the respec-
tive signals are anti-correlated.

These plots illustrate this statistic as a step towards
weighing the various detector contributions for signal
searches. The practical application of a validated op-
timal statistic would be to define weightings for cross-
correlation and auto-correlation terms for a specific sky
direction, corresponding to a particular detection of a
burst trigger. These weightings would then potentially
allow an optimal test for the detection of a correspond-
ing gravitational wave burst.

Several issues remain before this objective can be at-
tained; these include resolving the issues with additional
physical constraints on the signals and optimizing for the
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FIG. 21: Coefficients of individual terms vs. right ascension
for fixed declination: Coefficients of cross-correlation terms
for detector network including LLO, LHO, and VIRGO, for
fixed celestial declination of 12°.

polarization angle. In the former case, this is needed to
check the results against the simple cases of nearly co-
aligned, co-located detectors.

F. Comparison to other works on optimized
detection

Among the more directly comparable previous works is
that of Anderson et al. [48], who develop an excess power
method for detecting short bursts, uncharacterized other
than by short duration, of gravitational waves in a net-
work of detectors. Their treatment analyzes data in the
frequency domain and is generalized to detectors with
differing responses. Their optimal statistic is optimized
over unknown source direction, since their search method
is for untriggered bursts, in contrast to this work which is
concerned with triggered bursts, providing known source
direction. Their likelihood ratio result, prior to this op-
timization, may be compared to the result obtained here
in section 5.2. Viceré [49] develops a method in the case
of Gaussian noise (also for the more general untriggered
burst search), but here we seek to generalize to more re-
alistic noise environments.

VI. CONCLUSIONS AND DIRECTIONS FOR
FURTHER DEVELOPMENT

In seeking an optimal statistical test for triggered burst
searches, we first considered the simple case of two identi-
cal co-located co-aligned detectors. While the likelihood
ratio test performs best for ideal Gaussian noise, it does



not in certain cases for more realistic noise. Specifically,
for mixed Gaussian noise the cross-correlation test per-
forms best for low SNR even for very low fractions of
high variance noise.

This leads us to analytically develop an optimal like-
lihood ratio statistic. Here, we find for the two detector
case that the likelihood ratio method (assuming fixed po-
larization angle but otherwise unconstrained signal com-
ponents) yields the sum of the auto-correlation terms
with no cross-correlation contribution. This is because
the method maximizes over the space of possible signals
without regard to physical plausibility.

When expanded to networks of three or more detectors,
the likelihood ratio method produces a statistic that does
include cross-correlation terms. Using this statistic we
can identify weighings for terms as a function of source
direction. These results can also be easily adjusted for
the differing sensitivities of the various detectors, treating
the individual PSDs as similar except for a scale factor.
These results are illustrated by sky maps comparing the
term coefficients, which give expected results for correla-
tions involving less sensitive detectors.

Polarization angle is not an independent factor in these
weightings, since it defines a frame for separating the po-
larization components. Should it be desirable for certain
sources, initial calculations do suggest a route for devel-
oping a likelihood ratio statistic incorporating polariza-
tion angle as an unknown quantity.

A number of simplifying assumptions have been used,
and a variety of issues beg further analysis. Further work
is needed to determine if the optimal statistic can be
developed to recover the expected behavior for a pair
of nearly aligned detectors, possibly by constraining the
form of the unknown signal to more physically likely so-
lutions. Polarization angle should be considered fully.
Also, the statistic should be generalized to detectors that
are not identical, by incorporating the correlation matri-
ces in derivation.

The eventual goal is to obtain an optimal statistic
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for correlations between multiple detectors looking for
a gravitational wave burst from a known trigger. Results
obtained here begin to address how to grant preference
to certain correlation terms when statistically testing for
a signal. They incidentally suggest that all IFOs are po-
tentially important to this effort. If these questions are
resolved, this may provide information on weighting for
cross-correlations among three or more detectors, assist-
ing in this promising area of gravitational wave searches.
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APPENDIX A: LIST OF ABBREVIATIONS

ACIGA Australian Consortium for
Gravitational Astronomy

Interferometric

AIGO Australian International Gravitational Observa-
tory

BATSE Burst and Transient Experiment

CC cross-correlation

CGRO Compton Gamma-Ray Observatory
CGWA Center for Gravitational Wave Astronomy
GCN Gamma Ray Burst Coordinates Network
GRB gamma ray burst

GW gravitational wave

HETE High Energy Transient Explorer
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IFO interferometer
IGEC International Gravitational Event Collaboration

INTEGRAL International Gamma-Ray Astrophysics
Laboratory

LHO LIGO Hanford Observatory
LHO-2k LHO 2 km interferometer
LHO-4k LHO 4 km interferometer

LIGO Laser Interferometer Gravitational-Wave Obser-
vatory

LISA Laser Interferometer Space Antenna
LLO LIGO Livingston Observatory

LR likelihood ratio

LSC LIGO Scientific Collaboration

NASA National Aeronautics and Space Administration
NSF National Science Foundation

PSD power spectral density

ROC receiver operating characteristic
RXTE Rossi X-Ray Timing Explorer
RMS root-mean-square

SNR signal-to-noise ratio

XRF X-ray flash

APPENDIX B: LIST OF GRAVITATIONAL WAVE DETECTORS

detector  |location arm length |latitude |longitude | orientation

(km) °N °W °
LLO Louisiana, USA 4.0| 30.56 90.77 243.0
LHO (4k) |Washington, USA 4.0| 46.45 119.41 171.8
LHO (2k) |Washington, USA 2.0 46.45 119.41 171.8
VIRGO Italy 3.0 43.63 -10.50 116.5
TAMA-300|Japan 0.3| 35.68| -139.54 225.0
GEO-600 |Germany 0.6| 52.25 -9.81 68.8
AIGO Australia 0.08| -314 -115.7 315

TABLE II: Laser interferometer detectors. Note: All detectors have perpendicular arms with the exception of the GEO-600
detector, which has arms separated by 94.33°. Orientation refers to direction of bisector of arms measured counter-clockwise
from east. Data from Jaranowski, Krélak, and Schutz [38] except for AIGO data which is from Bhawal and Dhurandhar [50],

Blair [34], and Blair [51].



detector location latitude|longitude |orientation

o N o W o
ALLEGRO [Louisiana, USA| 30.45 91.17 130
AURIGA Italy 45.35 -11.95 46
EXPLORER |Switzerland 46.45 -6.20 51
NAUTILUS |Italy 41.82 -12.67 46
NIOBE Australia -31.93| 115.82 90

TABLE IIL: Resonant bar detectors. Note: Orietation refers
to bar alignment measured counter-clockwise from east. Data
from Lobo and Montero [52].

APPENDIX C: LIKELIHOOD RATIO STATISTIC
FOR TWO CO-LOCATED CO-ALIGNED
DETECTORS

Consider the likelihood ratio test statistic for two de-
tectors is generalized to unknown signal h:

- P\ (%1, Ta|h
A@[R) = max 2LELT21D)

o Po(T1,T2) (1)

Since individual samples are uncorrelated, these prob-

abilities are
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This statistic A can be maximized by maximizing
In(A). Substituting the above expressions for P; and Py
and taking the logarithm, we obtain
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Substituting this result for h; above gives the following
maximized statistic:

- L1+ To;
maxIn(A) = Z(xlz‘{'l'zz)(%)

i=1

_g(iﬂ”l’i‘;“’i)z )
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e

This statistic can be compared to a specified theshold
k.

APPENDIX D: DERIVATION OF MEANS AND
VARIANCES FOR SAMPLE TESTS

We first assume a pair of identical detectors co-located
and co-aligned. The signal in detector ¢ = 1,2 is described
as

z;(m) = n;(m) + h(m) (D1)
for the mth sample of N total samples, where n;(m) is
the noise in detector ¢ and h is the signal (same for both
detectors in this initial case). In the absence of any signal
z;(m) = ni(m).

Noise is assumed to be Gaussian and uncorrelated,
with 4 =0 and 02 = 1.

We note here the following:

Elni(m)] = 1, (D2)
var[n?(m)] = 2, (D3)
E[ni(m)na(m)] = 0, (D4)
var[nq (m)ng(m)] 1, (D5)
E[ni(m)h(m)] = 0, (D6)
var[n;(m)h(m)] h%(m), (D7)

forn=1,2.

1. Cross-correlation test

The cross-correlation statistic is defined as:

N
AC’C =<T1,T2 >= Z T (m)wg(m) (D8)
m=1
For simplicity, hereafter this will be written
(D9)

Acc =Y w1 (m)za(m)



With no signal present, this is

Acc = Zm (m)na(m) (D10)

and with signal present is
ce = X [mlm) + h(m)| [ma(m) + nGmy] D11

S (i) + 3 mam)hem)

Egmmwm+émwm

(D12)

Note that ), h*(m) = C' is a constant for a specified
signal.

For a large number of samples N, the central limit
theorem dictates that Acc and Ay~ will have Gaussian
distributions, with 4 and o2 simply related to the respec-
tive values for individual terms. For the case of no signal
we obtain:

E[Acc] = E[anng] ZZE[anLQ] (D13)
w =20 (D14)
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and

var[Acc] = E[AZc] - (E[Acc))® (D15)
= F |:Z nin9 Z nlng] -0 (D].G)

= ZE[n%ng] = Z 1 (D17)

o’ = N (D18)

Note that in obtaining the variance, the product
of summation terms involves independent summations
(summed over sample indices m and p, respectively);
these are uncorrelated (giving a product of 0) except for
the case m = p.

For the case with signal present, and letting C' =
>, h?, we obtain
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2. Likelihood ratio test
The likelihood ratio test statistic is:
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With no signal present, this is For the case of no signal, the mean and variance are
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1 1
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For the case with signal, we obtain:
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3. Variance sum test var[Avs] = E[A%g] — (E[Avs])? (D55)
2
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and with signal present is

For the case with signal:
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As before, for a large number of samples N, Ayg and (D61)

Ay g will have gaussian distributions. For the case of no
signal, the following results are found:
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APPENDIX E: LIKELIHOOD RATIO OPTIMUM
STATISTIC FOR A PAIR OF DETECTORS

1. General assumptions

We again consider the likelihood ratio test statistic for
two detectors, but in this case generalized to different
signals in each detector. With detectors of differing lo-
cations and alignments, the signals in the two detectors
will (generally) be different. The signal in detector j =
1,2 is described as

zj(m) =mnj(m) + hj(m) (E1)

for the mth sample of N total samples, where n;(m) is
the noise and h; the signal in detector j. In the absence
of any signal z;(m) = n;(m). Noise is assumed to be
uncorrelated.

The signal h; in detector j is of the form

where hy and hy are the plus and cross polarized com-
ponents of the gravitational wave, respectively, in some
frame of reference external to both detectors, and F;
and F\y; describe the response of detector j to these plus
and cross polarized gravitational wave components, re-
spectively. The responses F' are a function of the detec-
tors’ location and orientation on the Earth’s surface rel-
ative to the celestial location of the gravitational wave
source. Note that this is time dependent, since the
Earth’s rotation presents different detector orientations
to the gravitational wave. (For this analysis, the time
dependence will be ignored since a gravitational wave
burst is assumed to be of short duration compared to the
change in orientation produced by the Earth’s rotation.)

2. Deriving the likelihood ratio statistic for the

generalized two detector case

The likelihood ratio statistic is:

L P\ (T1,>|h)
A(Zlh) = mﬁax R Ts) (E3)

Individual samples are uncorrelated, so these probabil-
ities are

N
T hi4)? T h
P = Hexp(—( Lt > Li) )exp<—( 21 ) 2. );
i=1
N 2 2
L1, T34
P, = _ s _ s
! i];[leXp( 5 >e><p( 5 )

Note that in this case hy; and hy ; represent different
signals for two detectors with different locations and ori-
entations (different response functions in general). These
signals can be expressed in terms of the polarization com-
ponents of the gravitational wave in a particular external
frame:

hii = Fpihy i+ Feahy (E4)
Fiohy i+ Fxohx i (E5)

>
N
I

This statistic A can be maximized by maximizing
In(A), which is equal to

In(A) = —

i—hi)? i — hai)?
(21, . 1) _2(372, 2 2,i) (F6)

M-

<
I
MR

2 N 2
Li Z T34
2 2
i=1
N

N
= Z ml,ihl,i + Z $2,ih2,i - % Z
i=1 i=1 =t

T
+

Mz

I
-

i

1N
aEPILE

Substituting the above expressions for h;; and hs
gives
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N N N
1
InA = T1i(Frihy 4+ Fxihy) + Y @2i(Fiahg i+ Fxahy i) — = Y (Fyihg i+ Fxihy )’
i=1 i=1 2 i=1
1 X
=5 2 (Fizhii+ Fxaho i) (E7)
i=1
N
1 2 72 [ 2 V72
= Z (F1z1,i + Frazoi)hy i + (Fxayi + Fra®ai)hx,i — §(F+1 + )Ry — §(Fx1 + Flo)hy i
i=1
—(F+1F><1 -+ F+2F><2)h+’ih><7i (ES)
To maximize A requires
0 0
InA =0 and InA=0 E9
8h+,,’ n an 6hx,z’ n ( )
which gives
.’L'1’,'F+1 + l'g,z'F_’_z — (F—%—l + F_?_2)h+’1 — (F+1F><1 + F+2F><2)h><,z' = 0 (E].O)
and
21,iFx1 + 29, Fya — (F3y + Fao)hui — (FriFxi + FyaFya)hy i = 0 (E11)
These equations can be solved for hy ; and hy ; using matrix representation:
F? +F2%, FiiFyy + FroFuo| (hyi| _ | Frami + From (E12)
Fi1Fyi + FioFys F2, + F2, hx.i Fyi121,: + Fxaxai
hys _ 1 F2, + F2, —F 1 Fuy — FioFyo| | Fram; + Fiozo; (E13)
X, B |—FriFx1 — FraFyo F + F}, Fy1z1,; + Fyomay
where
B = (F-|2-1+Fi2)(F>2<1+F>2<2)_(F+1Fx1 +F+2F><2)2 (E14)
= F} \F2 + F},Fo + F \ F2y + F2,F2y — F2 F2 — 2F\FoF\1Fyy — F},F2, (E15)
== (F+2F><1 - F+1F><2)2 (E16)
Note that there is no solution if g = 0.
Taking the product of the above matrices gives
hyi| _ l q
o] L -
where
q = (F2, 4 F2)(Fy1z1,i + Fyaxo ;) — (Fya Fxy + FiaFyo)(Fxia1,; + Fxo®a,;) (E18)

and

(FyrFi + P Foy — Fuu FR — Fro P Fuo)my i + (FoFoy + FioFay — FyaFry — Fy1 Fui Fuo)wo

—(F+2F><1 - F+1F><2)F><2-771,z' + (F+2F><1 - F+1F><2)F><15172,z' (E19)



r = —(Fp1Fx1 + FroFxo)(Friz1,; + Fioxa ;)

+ (F7y + F2) (Fxami,i + Fxoma)
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(E20)

= (—F.|2_1F><1 — Py FioFys + F42_1F><1 + F_|2_2F><1)-T1,i + (=Fp1 FaFyy — Fizsz + F.2HF><2 + FiQsz)xz,i

= (Fo2Fy1 — Fy1Fyo)Fomy i — (FyoFy1 — FpiFyo)Fhazy (E21)
Combining these results gives
hyi| _ 1 —Fyomy i+ Fx12; (E22)
h‘X,i (F+2F><]_ —F+1F><2) F+2w1,i _F—|—1$2,’i
or
—Fyoz1,i + Fxaza,
hy ;= > : E23
+ FisFy1 — F{1Fy» (E23)
and
Fiomy ;i — Fraza,
| —— J J E24
T FiaFyxy — Fy1Fyo (E24)
When these are substituted into the previous expression for In(A) we obtain
al Fysxy; — Fy129; Fiixy; — Fiox
In(A) = 21 F +z N x241,3 x1 2,z+$ F +z +14L2,¢ +241,¢
( ) ; [( 1,4 +1 2,3 +2)F+1FX2 — F+2F><1 ( 1,04 x1 2,1 XZ)F+1F><2 — F+2F><1
1 F - F 1 F ; — F ;
Ll i )( x2@1,i — Fxa®a,)® Lope, +F§2)( 1o — Flom ;)?
2 (Fi1Fys — FioFy1)2 2 (Fi1Fys — FysFyq)?
(Fx2m1,; — Fxima ;) (Fy1xo,; — Fyoz i)
—(Fy1Fyy + FyoF * ' ’ ’ E25
(Fy1Fx1 + FyaFyo) (ForFrs — FraFor)? (E25)
N
= (Fy1Fyo — F1 o F F 1Fyy—F,,F E2
(F+1FX2_F+2FX12121|:$11 41 Fys — FyaFxr)® +$212( 41 Fys — FiaFx1)® (E26)
1 2 1 2
= 5 Z :L‘Li + 5 Z 1'2,1' (E27)
=1 i=1

APPENDIX F: DERIVATION OF OPTIMUM
STATISTIC FOR THREE OR MORE
DETECTORS

Here we obtain the likelihood ratio statistic for the
generalized case of three or more detectors at different
locations and arbitrary orientations.

1. General assumptions

With detectors of differing locations and alignments,
the signals in the three detectors will (generally) be dif-
ferent. The signal in detector j = 1,2,3 is described as
nj(m) + h;(m)

zj(m) = (F1)

for the mth sample of N total samples, where n;(m) is
the noise and h; the signal in detector j. In the absence
of any signal z;(m) = n;(m).

Noise is assumed to be uncorrelated.

The signal h; in detector j is of the form

hj = Fyjhy + Fxjhx

as before.

2. Deriving the likelihood ratio statistic for the
generalized three detector case

The general likelihood ratio test statistic for three de-
tectors is



33

Individual samples are uncorrelated, so these probabil-
R ities are
P]_(IL']_,.'L'Q,.’Eg'h)

A(Z|R) = )
(@lh) n Po(T1,72,T3)

(F3)

N Ry )2 B )2 B )2
P, — Hexp<— (21i 2h17,) )exp<_($2,z th,z) )exp<_ (23,i 2h3,,) >,
i=1

N z?, 3 ; 3 ;
_ 2L _ 22 i F4
il;[leXp( 5 )eXP( 5 )e p( 5 ) (F4)

Note that in this case the signals h;; represent different signals for each detectors—each with different location
and orientation (different response functions in general). These signals can be expressed in terms of the polarization
components of the gravitational wave in a particular external frame:

Py

hji = Fyjhy i+ Fyjhy; (F5)

This statistic A can be maximized by maximizing In(A), which is equal to

A (1, h1 ol (2, —h2 N Zgi—h3i  amTh anT3; 73
_ i 7 i z ,1 ,1 51 50 K
ln(A)——Z -y —Z . +Z : +Z 5 +Z 5 (F6)
i=1 =1 =1 =1 =1
al L, 1,5, 1.,
= Z T1,ih1i + z25ho ;i + 23,h3 — §h1,i - §h2,z’ - 2h3 i (F7)
=1

Substituting the corresponding expressions for the h; ;’s and rearranging terms gives
g g 3, ging g

N

InA = Z [h+,i(F+1$1,i + Flomg; + Fiaws ;) + hy i(Fx1®1,; + Fxa®ai + Fx3xs ;)
=1

1 1
_Eh?f-,l(F-iz-l + F_|2_2 + F—i2-3) - Ehi,,(Fil + F>2<2 + F>2<3) - h+,ih><,i(F+lF><1 + F+2F><2 + F+3F><3) (FS)
To maximize A requires

0 0
By InA =0 and B

)

InA=0 (F9)

which gives

F+1:c1,i + F+2.’1,‘2’i + F+3.’E3,,' - (F-|2-1 + F_%_Q + F_i2_3)h+,1 - (F+1Fx1 + F+2F><2 + F+3F><3)h,><’i = 0 and
Fx1@1,i + Fxo®oi + Fxswsi — (Fry + F2o + F2g)hxy — (FriFxy + FiaFxo + FysFys)hy; = 0 (F10)

These equations can be solved for k4 ; and hy ; using matrix representation:

F2, + F2, + F2, FuiFya + FoFyo + FigFus| (hyi| _ [Frazni + Fiodoi + Fiazsi (F11)
Fi Fyy + FiaFyo + F3Fy3 FZ +F2,+F2Z, hx,i Fy121, + Fyowa; + Fysxa;
[
For simplicity, the following variables are defined: Using this notation, the matrix solution for A4 ; and
hyx i is
ar = F3y + Fiy + Fis, (F12) o
ay = F} | +F},+ F2,, (F13) .
bi = FuxFay + FyaFus + FysFis, (F14) fil 2@ b (F18)
hx i B |=b1 a2 | |7
M = Fyim;+ Fraze; + Fyszs g, (F15)
Yo = Fyimi; 4+ Fyozo; + Fysxs, and (F16)
,3 = a1a2 —b% (F17)



Taking the product of the above matrices yields solu-
tions for hy ; and hy ;:

(F19)

h+,i = (@171 — b172),

hxi = (=b1v1 + az272) (F20)

™= =
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Substituting in the above expression for In(A) gives

I 1 1/1 2 1/1 2
InA = z=Z1 [E(al')’l —biy)mn + B(_bl'ﬁ +axy2)r — 5 (E(al’ﬁ - b1’Y2)> a2 =5 (E(—bl’h + a272)> I
1 1
5(01’71 - b1’Y2)E(—b1’Yl + azy2)b1 (F21)
1 & 1 L1
=3 Z [a1’712 = 2bimy2 + aﬂg] ~ 5 Z [;u(a%ﬁ —2a1b1v1y2
=1 =1
1
+b173) + 2(11(%72 — 2a5b171%2 + b17) + bi(araamiys — arbiyf — ashiys + bf’h’h)] (F22)
1 1 1
= 3 Z [a1712 —2bimiv2 + 02’73] 3 . Z [( atas + a1b1 - a1b2) v + <§a2b% + §a1a§ - azbf> 2
i=1
+ (—alazbl — arazby +arazb; + bf) 7172] (F23)
1Y 1 La a
1 2
=52 (0172 — 21y + cm%] -5 [73712 + 5B ~ blﬂvm] (F24)
=1" =1
1Y a a
= E Z 01’712 —2bimiy2 + azy; — %W% + by — 3275] (F25)
N Ta a
InA = Z —1’)'12 + —275 —bime (F26)
5|2 2
Now substituting for v; and 7v- gives
In(A) = ﬂ Z [al ( 2t i+ Fioxd  + Figas ) + FraFiom it + Fua Fismy s + FroFism iws z)
ta ( (Fiia3 ; + Frowh ; + Fra3 ;) + Fx1Fxot1,i%2i + Fx1 Fus®,is; + FuaFys® w3 z)
—b (F+1F><1»'Uii + FoFyoms i + FisFysas  + (Fy1Fuo + FroFyn)ay iz
+(Fp1Fx3 + Fy3Fy1)z1 23, + (FraFxs + F+3F><2)332,z'333,z')] (F27)

N
Z[ :L'l i a1F+1 +a2FX1 —201F1Fy1) +
=1

QI'—‘

1
2

1
Il]'z z(alF“ + azsz —2b1F 2 F )

+=z ,z( F 3+ a2F>2<3 — 2b1F+3F><3) + T1,;%2,; (a1F+1F+2 + aoFy1Fyo — bl(F+1F><2 + F+2FX1))

+21,i%3,4 (G1F+1F+3 + asFy1Fxs — bi(Fy1Fxs + F+3F><1)>

+T2,;T3; <G1F+2F+3 + asFyaFyxs — by (FyaFx3 + F+3Fx2)>]

(F28)
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Expansion and factoring of the coefficients on the z;; terms yields

N
1 1 1
In(A) = 3 ) [55’7%; ((F+1F><2 — Fy2F1)” + (Fy Fys — F+3F><1)2) + imé,i((FHsz — Fy2Fyx1)? + (FyaFys — F+3F><2)2)
i=1

1
+§ﬂf§,i ((F+1F><3 — Fy3Fy1)” + (FyoFy3 — F+3F><2)2) + T1,i%2,; ((F+1F><3 — Fi3F 1) (FyoFx3 — F+3F><2)>
+21,i%3, (—(F+1F><2 — P9 Fy1)(FyaFx3 — F+3F><2)) + 22,3, ((F+1F><2 — FioFy1)(Fy1Fxs — F+3F><1)>]

Expansion of § and rearranging yields

B = (F2y+ Foy+ F25)(F}y + Fiy + F23) — (Fy1 Fxy + FyoFyo + Fy3Fys)? (F29)
= (Fy1Fy2 — Fx1Fi2)? + (Fy1Fys — Fx1Fi3)? + (FyaFys — FxaFy3)? (F30)

Thus the result for the likelihood ratio statistic for three detectors may be written as

N
In(A) = Z [F&nﬂ?ii + :‘*ﬁzzﬂfg,i + H33$§,i + K12%1,i%2,; + K13%1,iT3,; + K23%2,iT3,5 (F31)
i=1
where Individual samples are uncorrelated, so these probabil-
ities are
1
K11 = %(ffz +f123>: (F32) hyi)?
| P, = H Hexp( 71) (F41)
K22 = _<f122+f223>7 (F33) i=1j=1
2B N n .'L'2
P = S 2 F42
k33 = fis+ 13 ), (F34) 0 HHexp( 2 )’ (F42)
B i=1j=1
Ki2 = Ef13f23, (F35) For detector j, the signal is
1
K13 = —Ef12f23, and (F36) hji= Fyjhyj+ Fxjhx,; (F43)
Kgs = 1 fiafis (F37) The log of the likelihood ratio statistic is
'B 1 N n
using the definitions In(A) = 3 Z Z [_(xj,i — hji)? + 5’7?1] (F44)
i=1 j=1
fog = FipFxq— F1qFyp and (F38) N n ,
B = fha+ fis+ f3s (F39) - ZZ[%Z g 2hJ ’] (F45)
i=1 j=1
Note that k,, > 0, that k11 + kea + k33 = 1, and that N n
Kpg for p not equal to ¢ may be positive, negative, or = Z [h+,zz i%ii + h ZFXJxJ,
Zero. i=1 =1 i=1
1 n
2 2
—5hh Z R, - ot Z X
3. Deriving the likelihood ratio statistic for n
detectors _h—l—,ih)( R Z F+]F><J:| (F46)
j=1
The general likelihood ratio test statistic for n detec-
tors is To maximize A requires
= Pl(fl,fg,...,fnlﬁ) 0 0
A(Z|h) = ma . F40 InA =0 and InA=0 F47
(@lh) Ex Py(Z1,Ta, ..., Tn) (F40) Ohy ; Ohyx i (F47)



which gives

n n n
D Frjwgi— (Z F—?—j)h-i-,i - (Z F+1ij)hx,j =0
7j=1 =1

i=1

(F48)
and
> Fujwji— (Z sz)hx,i - (Z F+jij)h+,j =0
7j=1 =1 j=1

(F49)

These can be expressed as in the previous case in ma-

trix form:
h+z’ 1 b T
== F
ol =gl ] e

Jj=1 j k,j<k
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simply using new definitions for these variables:

ZFXJ’ Z +39 Zbl

F+J X7

=) Frzji,  and (F51)

n
Yo = E Fyjxj;.
=1

The solution proceeds the same as before, then we sub-
stitute for these variables,

—

1 n . n n
EZFi]:E?z—}_ > F+jF+kxj,i$ki>+32<§z %%t Z FxJkaxj,ﬂkz)

Jj= J.k.j<k

+by (Z FyjFy ol + Z (FyjFxy + Fy i Fxj)xjimk, )]

J=1 Jikj<k

M=
DN | =
NE
8
b
0
+3
+
S
'11
l\D
o
&
&('11

n
+ Z wj’lxk,(alFHFq_k—|—a2F><]-ka—bl(F+jka+F+kij))]

n

n
21, F3,

p=1 p=1

I
| =
Mz
N =
M:

&,
;\

Expanding and gathering terms, this can be expressed as

N n n j—
= Z [Z K5 + Z '"vjk%z’wk,i] (F53)
i=1 Lj=1

1
j=1 k=1

where

Kii = 35 Z (F54)
k#]

Kjk = Z Finfrp (F55)
p#J k

8 = Z Z j2k and (F56)
=1 k=1

fra = FipFxq— FiqFxp (F57)

+ TjiThi (Fﬂ Fix Z F2, + FyjFy Z F?, — (FyjFuk + FyrFxj) Z F+prp)]
i<k

+F2,Y F}, —2F,;Fy; Z F+prp>

p=1

(F52)

p=1 p=1

APPENDIX G: LR STATISTIC DERIVATION
FOR UNKNOWN POLARIZATION ANGLE

The response functions of an IFO may be written

= sin[a(t) cos 2¢) + b(t) sin 2¢)]
= sin[b(t) cos2¢) — a(t) sin 2¢)]

(G1)
(G2)

s
==
(I
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where where the dependence on polarization angle v is sepa-

1 rated from all other dependences on source direction, de-

a(t) = —sin2vy(3 — cos2X)(3 — cos 24) cos[2(a — ¢')] tector orientation and location, and time; these depen-
16 dencies are contained in (); and R;:

—i cos 27ysin A\(3 — cos 28)sin[2(a — ¢')]

+% sin 2y sin 2 sin 24 cos(a — ¢') Qj = a;(t)sin¢ and R; =b;(t)sin¢ (G7)

1
—5 cos 27 cos Asin 28 sin(a — ¢')
Thus the signal in detector j is

+% sin 2y cos? A cos® & (G3)
— : : Y
b(t) = coi 2sin Asin é cos[2(a — ¢')] hji = Q; cos 20+ R; sin 20+ R; cos 20— Q; sin 2¢p (G8)
+3 sin 2v(3 — cos 2) sin § sin[2(a — ¢')]
+ c0s 2y cos A cos § cos(a — ¢') which can be substituted in the previous results for In(A):
1
+ 2 sin 2y sin 2 cos d sin(a — ¢') (G4)
N n
. . 1
For a given detector. The response functions may be In(A) = Z [Z (ajj,ihjﬂ- - §hii)] (G9)
rewritten as i=1 Lj=1
Fi; = Qjcos2y + Rjsin2¢ (G5)
Fy; = Rjcos2y — Q;sin2y (G6)  Substituting and collecting terms yields
|
N n n
In(A) = ) [(h+i €08 2th — hx; sin 2¢)) ( ijﬂj,i) + (hi sin 24 + hx; cos 2¢) (Z RJmM)
i=1 j=1 j=1

1 1 ~
+(—§h2+,. cos? 21 — 5h§<i sin? 29) + hy;hyx; sin 24 cos 29)) (Z Qj>

=1

1. 1 =
+(_§hii sin? 2¢) — §h§<i cos? 2¢) — h ih sin 21) cos 2¢) (Z Rj)

=1

+(—h3 ;sin 24p cos 2 — hyjhy; cos® 2¢) (Z QjRj) + (hyihxisin® 2¢) 4+ b2, sin 24) cos 2¢)) (Z QjRj>:|

i=1 =1

Defining the following variables,
= Q% a=) R, b=Y QRi,m=)» Qi and =) Rz
j=1 =1 j=1 j=1 =

allows expression of the statistic as

N
1 .
In(A) = Z |:h+i(’71 €08 290 + Y2 8in 2¢0) + hy; (Y2 cos 2¢) — 71 sin 2¢)) — §hii (a1 cos® 2 + ag sin? 2¢) + by sin 41))

i=1

1 1
_§hii(a2 cos? 2¢) + ay sin? 2¢) — by sin44p) + hihy; (§(a1 — ay) sin 44 — by cos 4¢)] (G10)
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We then take derivatives with respect to hy;, hxi, and ¥; (most generally treating v as variable with time):

1
—hyi(az cos? 29 + ay sin? 2¢) — by sin 49) + hyy (§(a1 — az) sin4y — by cos 4¢)

a}? InA =0 = 7 cos2¢ + vz 5in21) — h;(ay cos® 20 + ay sin? 29 + by sin 44))
+i
1
+hyi (§(a1 — ag) sin 4¢ — by cos 4’([))

9 InA=0 = 42c082¢) — v, sin 2%
Ohw; T n

0 .
e InA=0 = —2(y1hy; +712hxi)sin2¢ + (y2ha; — y1hxi) cos 29

X1

+hii(a1 sin41) — ay sin 49 + 2by cos49)) + hii(ag sin41) — a; sin 49 — 2by cos41))

+2hyihx; ((al — ay) cos 41 + 2b; sin 4¢)

Whereas in previous cases we obtained a set of coupled
linear equations, here we obtain non-linear equations in-
volving hy;, hy;, and 9;. However, the substitutions
X = cos2y and Y = sin 2y reduce the equations to a
set of quadratic equations. If ¢ is assumed constant, the
equations become

0 = X +7Y —a1 X2hy; —ayY?hy

20, XY hyi + (a1 — ap) XY hy; — by (X2 = Y?)hy
0 = X +mY —asX?hy; — a1Y?hy

201 XY hyi + (a1 — a2) XY hy; — bi(X? = Y?)hy;
0 = MYhyi+7%Xhy—v2Yhy —71Xhy

+(h3; = B)l(a1 — a2) XY + by (X? — Y?)]

+hyihxil(ar — az)(X? —Y?) 4+ 4b, X Y]

0=X>+Y%-1 (G12)
where
d d d
m=) Qf a=) R} bi=) QR
j=1 j=1 j=1
d d
"= Z Qjzji, and v2 = Zijj,i (G13)
J=1 j=1

For a polarization angle varying over time, X and Y
would become X; and Y.

APPENDIX H: SKY MAPS

(G11)

red=LLO LHOEK, yellow=LLO LHOZK, green=LLO VIRGO

Q 50 100 150 200 250 300 350
cyan=LHOak LHOZK, bluc=LHC4k VIRGD, magenta=LHOZK VIRGO

FIG. 22: Sky map of greatest CC contribution, 4 detectors,
case 1: Detectors: LLO, LHO-4k, LHO-2k, VIRGO.

red=LLO LHO4K, yollow=LLG LHOZK, green=LLO TARMA

0 80

100 150 200 250 300 350
cyan=LHO4k LHOzK, bluc=LHO4k TAMA, magenta=LHOZk TAMA

FIG. 23: Sky map of greatest CC contribution, 4 detectors,
case 2: Detectors: LLO, LHO-4k, LHO-2k, TAMA.
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red=LLO LHO4K, yellow=LLO LHOZK, green=LLO GEC red=LLG LHO4K, yollow=LLO TAMA, green=LLO GEC

Q 50 100 150 200 250 300 350 Q 50 100 150 200 250 300 350
cyan=LHC4k LHOZk, bluc=LHO4k GEQ, magenta=LHOZk GEQ cyan=LHO4k TAk4A, bluc=LHC4k GEQ, magenta=TAMA GEO

FIG. 24: Sky map of greatest CC contribution, 4 detectors,

case 3: Detectors: LLO, LHO-4k, LHO-2k, GEO. FIG. 27: Sky map of greatest CC contribution, 4 detectors,
case 6: Detectors: LLO, LHO-4k, TAMA, GEO.
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FIG. 25: Sky map of greatest CC contribution, 4 detectors,
case 4: Detectors: LLO, LHO-4k, VIRGO, TAMA. FIG. 28: Sky map of greatest CC contribution, 4 detectors,
case 7: Detectors: LLO, LHO-2k, VIRGO, TAMA.
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FIG. 26: Sky map of greatest CC contribution, 4 detectors,

case 5: Detectors: LLO, LHO-4k, VIRGO, GEO. FIG. 29: Sky map of greatest CC contribution, 4 detectors,

case 8: Detectors: LLO, LHO-2k, VIRGO, GEO.
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FIG. 30: Sky map of greatest CC contribution, 4 detectors, FIG. 33: Sky map of greatest CC contribution, 4 detectors,
case 9: Detectors: LLO, LHO-2k, TAMA, GEO. case 12: Detectors: LHO-4k, LHO-2k, VIRGO, GEO.
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FIG. 31: Sky map of greatest CC contribution, 4 detectors, FIG. 34: Sky map of greatest CC contribution, 4 detectors,
case 10: Detectors: LLO, VIRGO, TAMA, GEO. case 13: Detectors: LHO-4k, LHO-2k, TAMA, GEO.
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FIG. 32: Sky map of greatest CC contribution, 4 detectors, FIG. 35: Sky map of greatest CC contribution, 4 detectors,
case 11: Detectors: LHO-4k, LHO-2k, VIRGO, TAMA. case 14: Detectors: LHO-4k, VIRGO, TAMA, GEO.
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FIG. 36: Sky map of greatest CC contribution, 4 detectors,
case 15: Detectors: LHO-2k, VIRGO, TAMA, GEO.

APPENDIX I: CODE FOR MONTE CARLO
SIMULATIONS

The following code is written in Matlab [53].

% roc-combinedl

YA

% combined plot simulated/theoretical detector
% efficiency

clear
nsamp = 1024;
% nsamp = number of samples

deltm = 1;
% deltm = time interval

hwide = 0.1;
% hwide = for Gaussian signal pulse, time to
% drop from max to half max

freq = 0;
% freq = frequency for sinusoidal component
% of Gaussian signal pulse

% freq = 0 for no sinusoidal component

maxtr = 10000;
% maxtr = maximum number of trials

% thres = threshold for cc

snr = 2;
% snr = signal to noise ratio
% set legend

semilogx (0,0, black’,’LineStyle’,’-’);
hold on;
semilogx (0,0, black’,’LineStyle’,’--);

semilogx(0,0,’red’, ’LineStyle’,’=?);
semilogx (0,0, ’blue’, ’LineStyle’,’-");
semilogx(0,0,’green’,’LineStyle’,’-?);

legend(’simulated’,’analytic’,’CC test’,

SN1

% c

durk = hwidexhwide/log(2);

for

end
snr
H =

chs

% conduct monte carlo trials

for

% cross-correlation test

%1

% s

’LR test’,’var sum’,2)

ine=’-7;

reate signal

c=1:nsamp

x=deltm* (c/nsamp-0.5);

H(c)=1/exp(x*x/durk) ;

H(c)=H(c)*cos (x*xfreq*2*pi) ;

%h c
p = sqrt(sum(H.*H));
H*snr/snrp;
um = sum(H.x*H) ;

trial=1:maxtr

Ni=randn(l,nsamp) ;
N2=randn(1,nsamp) ;

Si=randn(1,nsamp)+H;
S2=randn(1,nsamp)+H;

cc(trial,l) =
cc(trial,?2)

ikelihood ratio test

Ni=randn(l,nsamp) ;
N2=randn(1,nsamp) ;

Si=randn(1,nsamp)+H;
S2=randn(1,nsamp)+H;

cv(trial,1) = sum(N1.%N1)/4 + sum(N2.x*N2)/4 ...

+ sum(N1.*N2)/2;

cv(trial,2) = sum(S1.%S1)/4 + sum(S2.%S2)/4 ...

+ sum(S1.%S52)/2;
um of variances test

Ni=randn(1,nsamp) ;
N2=randn(1,nsamp) ;

Sl=randn(1,nsamp)+H;
S2=randn(1,nsamp)+H;

cd(trial,1) = sum(N1.*N1)+sum(N2

sum(N1.*N2) ;
sum(S1.%S2);

LxN2) ;
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cd(trial,2) = sum(S1.%S1)+sum(S2.%S2) ;
end % trial
% compile data for roc curves

cc=sort(cc);
cv=sort(cv);
cd=sort(cd);

% cross-correlation test

for c2=1:maxtr
thres=cc(c2,1);
c3=1;
for c4=1:maxtr
if (cc(c4,2)>thres)
c3=c3+1;
end; % if
end % c4

Xc(c2)=1-c2/maxtr;
Yc(c2)=c3/maxtr;
end % c2

% likelihood ratio test

for c2=1:maxtr
thres=cv(c2,1);
c3=1;
for c4=1:maxtr
if (cv(c4,2)>thres)
c3=c3+1;
end; % if
end % c4

Xv(c2)=1-c2/maxtr;
Yv(c2)=c3/maxtr;
end % c2

% sum of variances test

for c2=1:maxtr
thres=cd(c2,1);
c3=1;
for c4=1:maxtr
if (cd(c4,2)>thres)
c3=c3+1;
end; % if
end % c4

Xd(c2)=1-c2/maxtr;
Yd(c2)=c3/maxtr;
end % c2

% plot results

semilogx(Xc,Yc,’red’,’LineStyle’ ,SNline);
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semilogx(Xv,Yv, ’blue’, ’LineStyle’,SNline) ;
semilogx(Xd,Yd, ’green’,’LineStyle’,SNline);

% theoretical results

1:10000
tc/10000;

for tc
valt

% likelihood ratio

meanno = nsamp/2;

meansg = chsum + nsamp/2;

varno = nsamp/2;

varsg = nsamp/2 + 2*chsum;

Xv(tc) = valt;
thres=meanno+sqrt (2*varno) *erfinv(1-2xvalt);
Yv(tc)=0.5-0.5%erf ((thres-meansg)/sqrt (2*varsg)) ;

% variance sum

meanno = nsamp*2;

meansg = chsum*2 + nsamp*2;

varno = nsamp*4;

varsg = nsamp*4 + 8*chsum;

Xd(tc) = valt;
thres=meanno+sqrt (2*varno) *erfinv(1-2*valt) ;
Yd(tc)=0.5-0.5%erf ((thres-meansg) /sqrt (2*varsg) ) ;

% cross—correlation

meanno = 0;

meansg = chsum;

varno = nsamp;

varsg = nsamp + 2*chsum;

Xc(tc) = valt;
thres=meanno+sqrt (2*varno) xerfinv(1-2*valt) ;
Yc(tc)=0.5-0.5%erf ((thres-meansg)/sqrt (2*varsg)) ;

end

% plot results

semilogx(Xv,Yv, ’blue’,’LineStyle’,’-=7);
semilogx(Xd,Yd, ’green’,’LineStyle’,’-=’);
semilogx (Xc,Yc,’red’,’LineStyle’,’--7);

axis([0.0001 1 0 11);
xlabel(’false alarm probability’);
ylabel(’detection probability’);
A=[’Signal G ’,num2str(hwide),’ S 7,
num2str (freq)];
title([A,” (SNR 2 and 7)’]);
%title([A,’: LR test (blue), CC test (red),
% variance sum (green)’]);
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% detector azimuths, degrees from E to arm
% done % bisector
AZ1=[243.0 171.8 171.8 116.5 225.0 68.775 315];
% detectors, angle between arms
ARM=[90 90 90 90 90 94.33 90];

APPENDIX J: CODE FOR LR COEFFICIENTS % detectors relative sensitivity, illustrative
IN DETECTOR CORRELATIONS Y values
COF=[1 1 0.5 0.75 0.17 0.5 0.17]1;
The following code is written in Matlab [53]. %COF=[11 1111 1];

dtr = 45/atan(1);
% newantb5.m
LAT = LAT/dtr;

clear LON = LON/dtr;
AZI = AZI/dtr;
% 1=LLD ARM = sin(ARM/dtr);
% 2=LHO 4k
% 3=LHO 2k phi = 45/dtr;
% 4=VIRGO
% B5=TAMA mmax=100;
% 6=GED nmax=50;

% 7=AIGO (postulated values)
% loop over celestial ra, dec
det(1) .name = ’LLO’;

det(2) .name = ’LHO4k’; for m=1:mmax+1;

det(3) .name = ’LHO2k’; ra=(m-1)*2*pi/mmax;

det(4) .name = ’VIRGO’; era = ra;

det(5) .name = *TAMA’;

det(6) .name = ’GED’; for n=1:nmax+1;

det(7) .name = ’AIGO’; dec=(n-1)*pi/nmax-pi/2;
% decvec(n)=dec;

% D = vector list of network detectors by

% detector number from above £(7,7) = 0;

D=1[1234]; cof (7,7) = 0;

ND = length(D);

for detnum=1:ND
% detector latitudes, degrees E k=D(detnum) ;
LAT=[30.56 46.45 46.45 43.63 35.68 52.25 -31.4];
% detector longitudes, degrees N
LON=[90.77 119.41 119.41 -10.5 -139.54 -9.81 -115.7];

A(k) = (1/16)*sin(2*AZI(k))*(3-cos(2*LAT(k)))
*(3-cos (2*dec) ) *cos(2*era) ...
-(1/4)*cos(2*%AZI (k) ) *sin (LAT (k) ) *(3-cos(2*dec))*sin(2*era)
+(1/4) *sin(2*AZI (k) ) *sin (2*LAT (k) ) *sin(2*dec)*cos(era) ...
-(1/2) *cos (2*AZI (k) ) *cos (LAT(k) )*sin(2*dec) *sin(era) ...
+(3/4) *sin(2*AZI (k) ) *cos (LAT (k) ) *cos (LAT (k) ) *cos (dec) *cos(dec) ;

B(k)=cos (2*AZI(k))*sin(LAT(k))*sin(dec) *cos(2*era) ...
+(1/4) *sin(2*AZI (k) ) * (3-cos(2*LAT (k) ))*sin(dec) *sin(2*era)
+cos (2*AZI(k))*cos(LAT(k))*cos(dec) *xcos(era)
+(1/2) *sin(2*AZI (k) ) *sin (2*LAT (k) ) *cos (dec) *sin(era) ;

P (detnum)
C(detnum)
G(detnum)

ARM (k) * (A (k) *cos (2*phi)+B(k) *sin(2*phi)) ;
ARM (k) * (B (k) *cos (2*phi)-A(k) *sin(2*phi)) ;
COF (k) ;



end % detnum end % if
end % det2
be = 0; end % detil
f(:,:) = 0;
for detl=1:ND-1 [mxcof ,mxn] = max(cvec);
for det2=det1+1:ND map2(m,n,1) = mxn;
f(detl,det2)= (P(det1)*C(det2) ...
- P(det2)*C(detl))*G(detl) *G(det2); map2(m,n,2) = era*dtr;
f(det2,detl)= (P(det2)*C(detl) ... map2(m,n,3) = dec*dtr;

- P(det1)*C(det2))*G(detl)*G(det?2);

be = be + f(detl,det2)*f(detl,det2); end % n
end % det?2 end % m
end % detil
% plot results
cof(:,:)=0;

for det1=1:ND
for det2=det1:ND
for det3=1:ND
if ((det3"=det2) & (det3"=detl))
cof(detl,det2)=cof(detl,det2) ...
+ f(det1,det3)*f(det2,det3)/be;
end % if
end % det3

figure
caxis([5 10]);
surf (map2(:,:,2) ,map2(:,:,3) ,map2(:,:
’EdgeColor’, ’none’);
view(2)
x1im([0 360])
y1im([-90 901)

axis equal

if (detl==det2)
cof (det1,det2) = cof(detl,det2)/2;

y1lim([-90 901)
specialcolor

end % if caxis([1 6])
end % det2 title([’red=’,det(D(1)) .name,’-’,
end % detl det(D(2)) .name,’, yellow=’,

det(D(1)) .name,’-’,det(D(3)) .name,
’, green=’,det(D(1)) .name,’-’,
det (D(4)) .name])
xlabel([’cyan=’,det(D(2)) .name,’-’,
det(D(3)) .name,’, blue=’,
det(D(2)) .name,’-’,det(D(4)) .name,
’, magenta=’,det(D(3)).name,’-’,
det(D(4)) .name])

% store data for skymap plot

nc=0;
for det1=1:ND
for det2=det1:ND
map (m,n,detl,det2) = abs(cof(detl,det2));
if (det1~=det2)
nc=nc+1;
cvec(nc) = map(m,n,detl,det2);



