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1 Objective and disclaimer

One aspect of the relativistic space-time curvature due to the presence of mass is
the breakdown of Euclidean (fiat-space) geometry. For example, the diameter of
a spherical mass is greater than the result obtained by dividing the circumference
by . The objective of this article is to determine the amount of discrepancy
between "relativistic” and” non-relativistic” diameters for objects such as the
Sun and Earth.

This is the outcome of a small exercise I engaged in with my tiny under-
standing of relativity; serious relativists please forgive me (and set me straight
as necessary!) (In this article equations in geometrized units arc denoted by an
asterisk.)

2 Einstein’s equation of general relativity (so
you can say you’ve seen it)

The Einstein field equation can be written as

Gop = SW%TQQ (1)
where Gg is the Einstein curvature tensor, Ti,g is the stress-energy tensor, G
is the gravitational constant, and c¢ is the spced of light. The Einstein tcnsor
describes the curvature of space-time; the stress-energy tensor describes the den-
sity of mass-energy. This equation therefore concisely describes the curvature
of space-time that results from the presence of mass-energy. This curvature in
turn determines the motion of freely falling objects.
The math involved in using this equation to its fullest is a textbook-length
subject. This equation can only be explicitly solved for limited situations, one
of which is described by Schwarzschild.



3 The Schwarzschild metric and uniforrn den-
sity spheres

By extending the Pythogarean theorem one can write, for Euclidean (flat) space,

ds* = dz® + dy? + d=*. (2)

In this relationship, ds is the distance between two nearby points separated by
orthogonal displacements dx, dy, and dz.
Special relativity gives the metric

ds® = —2dt? + da? + dy® + d2*>. (3)

which intertwines space and time. In other words, the separation ds of two
nearby points is determined by separation in space and separation in time.
The Schwarzschild metric expresses this as

ds? = —e®dt? + 22 dr? + r2(d6? + sin® 0d¢?) * (4)

Note that geometrized units are used here (and in all subsequent equations
denoted by *), in which ¢ = G = 1 such that 2M = Rg, where Rg is the
Schwarzschild radius. (Such practice is traditional in general relativity, which
does some to indicates the degree to which theoretical work dominates in the
field.) The Schwarzschild metric allows some explicit solutions for iwlated spher-
ically symmetric objects. Specifically, for such an object the above metric may
be written as

dr?

ds? = —e*®dt> + —
+ 1—2m/r

+ r%(d6? + sin® 0d¢?) % . (5)
In this equation, m is is the mass within distance r of the center and can be
written as

m(r) = /OT 4rr? p(r)dr (6)

where p(r) is density as a function of r.
If we examine the space-time curvature on a radius of an object, then t, 6,
and ¢ are constant. Then the Schwarzschild metric reduces to

dr?

ds® = ———
8 1—2m/r

(7)
From this we get an expression for s, which is proper displacement (distance in
the curved space-time) from the object’s center to its surface:

R
dr
s = / —_— * . (8)
0o 1—2m/r
R is the Schwarzschild r-coordinate of the object’s surface (taking the center to
be the origin). More simply, R is the result of dividing the object’s circumference
by 2m. In contrast, s is the true distance from center to surface, or true radius.



If density p is assumed constant, then m(r) can be written as

m(r) = ﬁM 9)

where R and M are the radius and total mass, respectively, of the object.

Combining these gives

R
d
5= S * . (10)

0o /1 —2M7"2/R3

Note that the denominator in the expression is real. Since 2M < R for objects
which are not black holes and r2 < R? if we are constrained to the interior of
the object. This assures that (1 — (2M/R)(r?/R?)) is positive.

Taking the integral gives

(11)

which evaluated gives

2M
s=Ry/ % arcsin ( R) * . (12)

If 2M is replaced by Rg and the equation is rewritten in conventional units,

we obtain
| 3c? R
5= Sipo arcsin ( RS) (13)

This equation expresses s as dependent on the object’s density and the degree
to which is is close to being a black hole (the latter represented by Rg/R).

If the object’s radius is much greater than its Schwarzschild radius Rg, or
R > 2M = Rg, then the following approximation can be applied:

23
arcsinz ~ x + 3 (14)

Applying this approximation to our previous result gives

M R
s:R+?:R+%=R+AR % (15)
Note that this can be loosely interpreted to say that the ”relativistic” radius s
is equal to the Euclidean or "non-relativistic” radius R plus a correction AR.
As long as R > 2M , the correction is dependent only on the object’s mass and
is independent of its radius.



4 Results for a uniform density Sun and Earth
To determine values of AR for the Sun and Earth, we use the following:
speed of light ¢ = 299,792,458 m/s
gravitational constant G = 6.6726 x 107! m3 /kg s?
geometrized mass m = (G/c?)Meony (Where meon, = conventional mass)

The Schwarzschild radius which is Rg = 2M in geometrized units is equal
to the following in conventional units:

2GM

5 -

Rs =

E (16)

The true circumference of a non-rotating black hole with a given mass is
Cbh = 27TRS
Specific observed and derived data for the Sun and Earth are as follows:

Sun Earth

GM  1.32712438 x 1020 m3/s2  3.98600441 x 10 m3/s2

R 695,990 km 6,371.0 km
Rg 2.95325003 km 8.87005606 mm
AR 492 m 1.48 mm

The table lists GM rather than M, since GM for the Earth and Sun is
known with greater accuracy than the mass. The measured radii of the Sun
and Earth would correspond to R in our formulation, not s. For both bodies
Rs < R, justifying use of the final expression of the relativistic correction to
the radius as AR = M/3-assuming uniform density.

5 The clash between model and reality: results
for realistic models of the Sun and Earth

The Sun and Earth are not uniform in density. The density of both increases
towards the center. Thc density at the center of the Sun is over 100 times its
average density. The situation for the Earth is less extrcme where the inner core
is 3.6 times as dense as the upper mantle.

The resultant concentration of mass toward the center will increase the space-
time curvature. The results obtained above for uniform density models must
therefore be called into question-particularly that for the Sun.



Obtaining a more realistic value for relativistic correction to radius requires
a numerical integration of

(17)

R dr
B :/0 V1=2m(r)/r

while using a model mass distribution m(r)/r.
For the Sun the following interior model from Cox (ed., Allen’s Astrphysical
Quantities, 2000) was used:

r/R  m(r)/M

0 0
0.007  0.00003
0.02  0.001
0.09  0.057
0.22  0.399
0.32  0.656
0.42  0.817
0.52  0.908
0.60  0.945
0.71  0.977
0.81  0.992
0.91  0.999
0.96  0.9999
0.99  1.0000
1.00  1.0000

By extrapolating the model distribution shown in Figure I was obtained.
This was used to numerically integrate (in an Excel spreadsheet) to obtain s
using a step dr = 8,000 km. The result was AR = 2.05 km, four timcs greater
than for the uniform density model.

In the case of the Earth, an approximate relation m(r) was derived from tab-
ulated p(r) values given in Lide (ed., CRC Handbook of Chemistry and Physics,
1997). The result for m(r) is shown in Figure 2. In performing the numerical
integration to obtain s, a variable step was used in conformance to the tabulated
r and p values. As a result dr varied from 3 km to 300 km.

The result is a value of AR = 2.2 mm, or 1.5 times the result for the uniform
density model.

6 Relativistic volume for the Sun

Because of the curvature of space-time, the volume contained within the surface
of the Sun and the Earth is greater than the volume enclosed by a similar surface
in Euclidean space.



The relativistic volume V,.¢; is equal to

R
Vel = / Amrds. (18)
0

Using the same method as before, this was numerically integrated for the Sun.
Volume was not directly compared to the result from V = (4/3)7R? because
of the low accuracy of the integration method. This was instead compared to
the result obtained when dr was substituted for ds (an expression for volume in
Euclidean space). The accuracy is limited by the large step sii:e (for this reason
a calculation for the Earth was not attempted).

For the Sun it was found that the ratio of V,..; to Euclidean volume was
1.000006. The relativistic correction to the Sun’s volume is then about 6 ppm,
or about 6 times the volume of the Earth.

7 Embedding diagram for the solar interior

Another expression of the space-time curvature is provided by the familiar em-
bedding diagram. For this, z(r) is the displacement (”lift-out”) along a radius
of the star, viewed as embedded in Euclidean (r, z) space.

For a uniform density object, Misner, Thorne, and Wheeler (Gravitation,
1973, p. 610) derive

z(r>=\/£;<1_\/1_2]‘éf) ; (19)
for r < R.

Using this expression s was obtained by numerical integration using the fact
that ds? = dr? 4 dz? For the uniform density model, the result is AR = 0.5
km, confirming the result from section 3. For the realistic solar interior model,
z must be obtained by numerical integration, using the previous integration for
s and the relation dz = v/ds? — dr2.

These results "were used to compare z(r) for the uniform density and realistic
solar interior models. This is shown in Figure 3, where z(R) = 0 for convenience.
The upper curve is for the uniform density model and the lower curve for the
realistic model. Note the different behavior of the curvature for the realistic
model. The difference in z between the center and surface is over twice as great
for the realistic model than for the uniform density model.

It bears mentioning that, the curve for the Sun (or Earth) beyond the sur-
face is independent of the internal density structure. This can be seen in the
Schwarzschild metric previously reduced for constant ¢, 6, and ¢; outside the
object, m(r) = M for all r, so

dr?

ds® = ————
ST 1 2M)r

* (20)

has no dependence on m(r) beyond dependence on the total mass M.



Also, if the above equation for z is written in conventional units the depen-
dence on the object’s radius and mass can be reduced to simple dependence on

density:
[ 3c? 87Gp

8 Comment on neutron stars

Previously we obtained an equation for s for an object of uniform density. A
neutron star of radius R = 10 km and mass M = 1.5Mg,, has Rs = 4.5
km. (In this case, R is not significantly greater than Rg so the approximation
AR = Rg/3 cannot be used.) Assuming uniform density, the equation gives s
= 11 km, or AR=1 km= 0.1R.

To estimate the relativistic volume of a neutron star, a numerical integration
was performing using the above data and a step with dr = 0.01R. This gave a
value for V;..; about 18% greater than the Euclidean volume. This suggests that
relativistic space-time curvature is a significant consideration when modelling
the interiors of neutron stars.

9 Conclusion

This exercise produced several expressions of relativistic curvature for solar sys-
tem objects. The true diameters of the Sun and Earth are 4.1 km and 4.4 mm
greater, respectively, than one would expect from applying Euclidean geometry
(C = md) to the observed surface of these bodies. These results are significantly
affected by the non-uniform internal density variation of these bodies; they are
4 and 1.5 times greater, respectively, than for a equal mass/equal circumfer-
ence object of uniform density. In the case of the Sun, this internal space-time
curvature affords it a volume 6 parts per million greater than the Sun’s surface
would enclose in Euclidean space. An embedding diagram was graphed for the
case of the Sun. This demonstrates the contrast between cmvatme in the Sun
and in a uniform density model of the Sun. Quick calculations for a neutron
star, assuming uniform density, showed the relativistic radius and volume to be
10% and 18% greater than the corresponding Euclidean values.

(©2001, 2008 by Wm. Robert Johnston
Last modified 3 November 2008
http://www.johnstonsarchive.net/relativity/stcurve.pdf



